Suppr超能文献

HS-AFM 单分子结构生物学揭示了转运蛋白“流浪癖”动力学的基础。

HS-AFM single-molecule structural biology uncovers basis of transporter wanderlust kinetics.

机构信息

Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology Program, Weill Cornell Graduate School of Biomedical Sciences, New York, NY, USA.

Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA.

出版信息

Nat Struct Mol Biol. 2024 Aug;31(8):1286-1295. doi: 10.1038/s41594-024-01260-3. Epub 2024 Apr 17.

Abstract

The Pyrococcus horikoshii amino acid transporter Glt revealed, like other channels and transporters, activity mode switching, previously termed wanderlust kinetics. Unfortunately, to date, the basis of these activity fluctuations is not understood, probably due to a lack of experimental tools that directly access the structural features of transporters related to their instantaneous activity. Here, we take advantage of high-speed atomic force microscopy, unique in providing simultaneous structural and temporal resolution, to uncover the basis of kinetic mode switching in proteins. We developed membrane extension membrane protein reconstitution that allows the analysis of isolated molecules. Together with localization atomic force microscopy, principal component analysis and hidden Markov modeling, we could associate structural states to a functional timeline, allowing six structures to be solved from a single molecule, and an inward-facing state, IFS, to be determined as a kinetic dead-end in the conformational landscape. The approaches presented on Glt are generally applicable and open possibilities for time-resolved dynamic single-molecule structural biology.

摘要

日本热球菌氨基酸转运蛋白 Glt 的揭示,与其他通道和转运蛋白一样,具有活动模式转换的特性,以前称为漫游癖动力学。不幸的是,迄今为止,这些活性波动的基础尚不清楚,这可能是由于缺乏直接访问与瞬时活性相关的转运蛋白结构特征的实验工具。在这里,我们利用高速原子力显微镜的独特优势,提供同时的结构和时间分辨率,来揭示蛋白质中动力学模式转换的基础。我们开发了膜延伸膜蛋白重构,允许对分离的分子进行分析。与定位原子力显微镜、主成分分析和隐马尔可夫模型一起,我们可以将结构状态与功能时间线相关联,允许从单个分子中解决六个结构,并确定内向状态 IFS 作为构象景观中的动力学终点。所提出的方法在 Glt 上具有普遍适用性,并为时间分辨的动态单分子结构生物学开辟了可能性。

相似文献

1
HS-AFM single-molecule structural biology uncovers basis of transporter wanderlust kinetics.
Nat Struct Mol Biol. 2024 Aug;31(8):1286-1295. doi: 10.1038/s41594-024-01260-3. Epub 2024 Apr 17.
2
Direct visualization of glutamate transporter elevator mechanism by high-speed AFM.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1584-1588. doi: 10.1073/pnas.1616413114. Epub 2017 Jan 30.
3
The high-energy transition state of the glutamate transporter homologue GltPh.
EMBO J. 2021 Jan 4;40(1):e105415. doi: 10.15252/embj.2020105415. Epub 2020 Nov 13.
4
Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats.
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20752-7. doi: 10.1073/pnas.0908570106. Epub 2009 Nov 19.
5
Low Affinity and Slow Na+ Binding Precedes High Affinity Aspartate Binding in the Secondary-active Transporter GltPh.
J Biol Chem. 2015 Jun 26;290(26):15962-72. doi: 10.1074/jbc.M115.656876. Epub 2015 Apr 28.
6
Millisecond dynamics of an unlabeled amino acid transporter.
Nat Commun. 2020 Oct 6;11(1):5016. doi: 10.1038/s41467-020-18811-z.
8
Transport rates of a glutamate transporter homologue are influenced by the lipid bilayer.
J Biol Chem. 2015 Apr 10;290(15):9780-8. doi: 10.1074/jbc.M114.630590. Epub 2015 Feb 20.
9
Constraints imposed by the membrane selectively guide the alternating access dynamics of the glutamate transporter GltPh.
Biophys J. 2012 Mar 21;102(6):1331-40. doi: 10.1016/j.bpj.2012.02.028. Epub 2012 Mar 20.
10
Structural ensemble of a glutamate transporter homologue in lipid nanodisc environment.
Nat Commun. 2020 Feb 21;11(1):998. doi: 10.1038/s41467-020-14834-8.

引用本文的文献

1
Unraveling dynamics of nuclear pore and chromatin via HS-AFM.
Anat Sci Int. 2025 May 19. doi: 10.1007/s12565-025-00849-y.
2
A structural biology compatible file format for atomic force microscopy.
Nat Commun. 2025 Feb 15;16(1):1671. doi: 10.1038/s41467-025-56760-7.

本文引用的文献

1
Environmentally Ultrasensitive Fluorine Probe to Resolve Protein Conformational Ensembles by F NMR and Cryo-EM.
J Am Chem Soc. 2023 Apr 19;145(15):8583-8592. doi: 10.1021/jacs.3c01003. Epub 2023 Apr 6.
2
Membrane-mediated protein interactions drive membrane protein organization.
Nat Commun. 2022 Nov 30;13(1):7373. doi: 10.1038/s41467-022-35202-8.
3
Regulation of the mammalian-brain V-ATPase through ultraslow mode-switching.
Nature. 2022 Nov;611(7937):827-834. doi: 10.1038/s41586-022-05472-9. Epub 2022 Nov 23.
4
The twisting elevator mechanism of glutamate transporters reveals the structural basis for the dual transport-channel functions.
Curr Opin Struct Biol. 2022 Aug;75:102405. doi: 10.1016/j.sbi.2022.102405. Epub 2022 Jun 13.
5
Membrane-Mediated Interactions Between Protein Inclusions.
Front Mol Biosci. 2021 Dec 22;8:811711. doi: 10.3389/fmolb.2021.811711. eCollection 2021.
6
Localization atomic force microscopy.
Nature. 2021 Jun;594(7863):385-390. doi: 10.1038/s41586-021-03551-x. Epub 2021 Jun 16.
8
Glutamate transporters have a chloride channel with two hydrophobic gates.
Nature. 2021 Mar;591(7849):327-331. doi: 10.1038/s41586-021-03240-9. Epub 2021 Feb 17.
9
Na-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters.
Sci Adv. 2020 Nov 18;6(47). doi: 10.1126/sciadv.aba9854. Print 2020 Nov.
10
The high-energy transition state of the glutamate transporter homologue GltPh.
EMBO J. 2021 Jan 4;40(1):e105415. doi: 10.15252/embj.2020105415. Epub 2020 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验