多血统烟草使用障碍的荟萃分析确定了 461 个潜在的风险基因,并揭示了与多种健康结果的关联。

Multi-ancestry meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals associations with multiple health outcomes.

机构信息

Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA.

Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

出版信息

Nat Hum Behav. 2024 Jun;8(6):1177-1193. doi: 10.1038/s41562-024-01851-6. Epub 2024 Apr 17.

Abstract

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (n = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.

摘要

烟草使用障碍(Tobacco use disorder,TUD)是世界上最普遍的物质使用障碍。遗传因素影响吸烟行为,尽管利用全基因组关联研究已经取得了进展,以确定风险变异,但大多数确定的变异是针对尼古丁的消耗,而不是 TUD。在这里,我们利用四个美国生物库,对 653790 名个体(495005 名欧洲人、114420 名非裔美国人、44365 名拉丁裔美国人)的 TUD(通过电子健康记录推断)进行了多祖先荟萃分析,并结合了英国生物库(n=898680)的数据。我们确定了 88 个独立的风险位点;与功能基因组工具的整合揭示了 461 个潜在的风险基因,这些基因主要在大脑中表达。TUD 与传统上确定的队列中的吸烟和精神特征、儿童的外在行为以及数百种医疗结果(包括 HIV 感染、心脏病和疼痛)存在遗传相关性。这项工作进一步加深了我们对 TUD 的生物学理解,并确立了电子健康记录作为研究 TUD 遗传学的表型信息来源。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索