Kim Su-Hyun, Choi Pan-Kyu, Lee Yong-Bok, Kim Tae-Soo, Jo Min-Seung, Lee So-Young, Min Hyun-Woo, Yoon Jun-Bo
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
Samsung Electronics Co., Ltd. 1, Samsungjeonja-ro Hwaseong-si Gyeonggi-do 18448 Republic of Korea.
Nanoscale Adv. 2024 Feb 27;6(8):2013-2025. doi: 10.1039/d3na01044a. eCollection 2024 Apr 16.
Adhesion has attracted great interest in science and engineering especially in the field pertaining to nano-science because every form of physical contact is fundamentally a macroscopic observation of interactions between nano-asperities under the adhesion phenomenon. Despite its importance, no practical adhesion prediction model has been developed due to the complexity of examining contact between nano-asperities. Here, we scrutinized the contact phenomenon and developed a contact model, reflecting the physical sequence in which adhesion develops. For the first time ever, our model analyzes the adhesion force and contact properties, such as separation distance, contact location, actual contact area, and the physical deformation of the asperities, between rough surfaces. Through experiments using atomic force microscopy, we demonstrated a low absolute percentage error of 2.8% and 6.55% between the experimental and derived data for Si-Si and Mo-Mo contacts, respectively, and proved the accuracy and practicality of our model in the analysis of the adhesion phenomenon.
粘附现象在科学和工程领域,尤其是在纳米科学领域引起了极大的关注,因为每一种物理接触本质上都是粘附现象下纳米级微凸体间相互作用的宏观表现。尽管其很重要,但由于研究纳米级微凸体间接触的复杂性,尚未开发出实用的粘附预测模型。在此,我们详细研究了接触现象,并开发了一个反映粘附发展物理过程的接触模型。我们的模型首次分析了粗糙表面之间的粘附力和接触特性,如分离距离、接触位置、实际接触面积以及微凸体的物理变形。通过使用原子力显微镜进行的实验,我们证明了在硅 - 硅和钼 - 钼接触的实验数据与推导数据之间,绝对百分比误差分别低至2.8%和6.55%,并证明了我们的模型在分析粘附现象方面的准确性和实用性。