Suppr超能文献

用于基于视频的血压估计中保留脉搏信号的形状细节

Preserving shape details of pulse signals for video-based blood pressure estimation.

作者信息

Han Xuesong, Yang Xuezhi, Fang Shuai, Chen Yawei, Chen Qin, Li Longwei, Song RenCheng

机构信息

School of Computer and Information, Hefei University of Technology, Hefei, 230009, China.

Anhui Key Laboratory of Industry Safety and Emergency Technology, Hefei, 230009, China.

出版信息

Biomed Opt Express. 2024 Mar 15;15(4):2433-2450. doi: 10.1364/BOE.516388. eCollection 2024 Apr 1.

Abstract

In recent years, imaging photoplethysmograph (iPPG) pulse signals have been widely used in the research of non-contact blood pressure (BP) estimation, in which BP estimation based on pulse features is the main research direction. Pulse features are directly related to the shape of pulse signals while iPPG pulse signals are easily disturbed during the extraction process. To mitigate the impact of pulse feature distortion on BP estimation, it is necessary to eliminate interference while retaining valuable shape details in the iPPG pulse signal. Contact photoplethysmograph (cPPG) pulse signals measured at rest can be considered as the undisturbed reference signal. Transforming the iPPG pulse signal to the corresponding cPPG pulse signal is a method to ensure the effectiveness of shape details. However, achieving the required shape accuracy through direct transformation from iPPG to the corresponding cPPG pulse signals is challenging. We propose a method to mitigate this challenge by replacing the reference signal with an average cardiac cycle (ACC) signal, which can approximately represent the shape information of all cardiac cycles in a short time. A neural network using multi-scale convolution and self-attention mechanisms is developed for this transformation. Our method demonstrates a significant improvement in the maximal information coefficient (MIC) between pulse features and BP values, indicating a stronger correlation. Moreover, pulse signals transformed by our method exhibit enhanced performance in BP estimation using different model types. Experiments are conducted on a real-world database with 491 subjects in the hospital, averaging 60 years of age.

摘要

近年来,成像光电容积脉搏波描记法(iPPG)脉搏信号在非接触式血压(BP)估计研究中得到了广泛应用,其中基于脉搏特征的血压估计是主要研究方向。脉搏特征与脉搏信号的形状直接相关,而iPPG脉搏信号在提取过程中容易受到干扰。为减轻脉搏特征失真对血压估计的影响,有必要在保留iPPG脉搏信号中有价值的形状细节的同时消除干扰。静息状态下测量的接触式光电容积脉搏波描记法(cPPG)脉搏信号可被视为未受干扰的参考信号。将iPPG脉搏信号转换为相应的cPPG脉搏信号是确保形状细节有效性的一种方法。然而,通过直接从iPPG转换为相应的cPPG脉搏信号来实现所需的形状精度具有挑战性。我们提出了一种方法来缓解这一挑战,即使用平均心动周期(ACC)信号代替参考信号,该信号可以在短时间内近似表示所有心动周期的形状信息。为此开发了一种使用多尺度卷积和自注意力机制的神经网络用于这种转换。我们的方法在脉搏特征与血压值之间的最大信息系数(MIC)方面有显著提高,表明相关性更强。此外,通过我们的方法转换的脉搏信号在使用不同模型类型进行血压估计时表现出更好的性能。在一个拥有491名平均年龄为60岁的医院真实世界数据库上进行了实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cad0/11019694/88aad3d54a2d/boe-15-4-2433-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验