Suppr超能文献

基于近红外-中红外光谱数据融合与校准转移的三七中非法添加阿替洛尔的定量分析

Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIR-MIR spectral data fusion and calibration transfer.

作者信息

Du Jie, Huang Zhengwei, Li Chun, Jiang Ling

机构信息

Nanjing Forestry University, College of Information Science and Technology Nanjing 210037 China

出版信息

RSC Adv. 2024 Apr 17;14(18):12428-12437. doi: 10.1039/d3ra08183d. eCollection 2024 Apr 16.

Abstract

To address the issue of the common illegal addition of Atenolol in Panax notoginseng, we propose an approach that realizes multivariate calibration transfer between different particle sizes based on near-infrared (NIR) and mid-infrared (MIR) spectral data fusion. To achieve high prediction accuracy, we construct three data fusion schemes (full-spectrum fusion, feature-level fusion, and decision-level fusion) that combine NIR and MIR spectral data. Among three data fusion schemes, the feature-level fusion based on the UVE-SPA-PLS model for 120-mesh spectral data achieves optimal prediction accuracy. Here, a Piecewise Direct Standardization (PDS) algorithm has been applied to calibration transfer from 100-mesh and 80-mesh to 120-mesh to reduce the influence of particle size and improve the robustness of the model. The correlation coefficient () of 100-mesh, and 80-mesh prediction sets can reach 0.9861 and 0.9823, respectively. The corresponding root mean square error (RMSE) are 0.1545 and 0.2045, respectively. This research provides a method for illegal additions in precious herbs and reduces the effect of particle size on spectral modeling, enabling high-precision quantitative detection. In addition, it has important application prospects in reducing experimental losses of precious medicinal materials and ensuring the safe use of Chinese and Western medicines, which provides an alternative method for non-destructive testing.

摘要

为解决三七中常见的非法添加阿替洛尔问题,我们提出了一种基于近红外(NIR)和中红外(MIR)光谱数据融合实现不同粒径之间多元校准转移的方法。为实现高预测精度,我们构建了三种结合近红外和中红外光谱数据的数据融合方案(全光谱融合、特征级融合和决策级融合)。在这三种数据融合方案中,基于UVE-SPA-PLS模型的120目光谱数据的特征级融合实现了最优预测精度。在此,采用分段直接标准化(PDS)算法将100目和80目的校准转移至120目,以减少粒径影响并提高模型的稳健性。100目和80目预测集的相关系数()分别可达0.9861和0.9823。相应的均方根误差(RMSE)分别为0.1545和0.2045。本研究为名贵药材中的非法添加物提供了一种检测方法,减少了粒径对光谱建模的影响,实现了高精度定量检测。此外,该方法在减少名贵药材实验损耗、保障中西药品安全使用方面具有重要应用前景,为无损检测提供了一种替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f299/11022189/f50498736ae1/d3ra08183d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验