Baraean Abdullah, Kassas Mahmoud, Alam Md Shafiul, Abido Mohamed A
Department of Electrical Engineering, College of Engineering and Physics, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
Interdisplinary Research Center for Sustainable Energy Systems (IRC-SES), Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
Heliyon. 2024 Apr 4;10(7):e29254. doi: 10.1016/j.heliyon.2024.e29254. eCollection 2024 Apr 15.
This paper proposes an advanced control approach to controlling a DC-DC buck converter for a proton exchange membrane (PEM) electrolyzer within the framework of a direct current (DC) microgrid. The proposed adaptive backstepping terminal sliding mode control (ABTSMC) leverages a physics-informed neural network (PINN) to accurately estimate and compensate for system uncertainty. The composite controller achieves finite-time convergence of the tracking error by combining backstepping control and terminal sliding mode control (TSMC). The proposed PINN aims to optimize the unconstrained parameters by utilizing observed training points from the solution, ensuring the network accurately interpolates a limited portion of the solution. The efficacy of the proposed hybrid control method is validated using a hardware-in-the-loop (HIL) implementation under various test settings, ensuring the preservation of the actual performance of the PEM electrolyzer during testing. The experimental verification results demonstrate that the proposed control method exhibits greater benefits, such as a faster dynamic response and greater robustness against parameter uncertainties than improved sliding mode-based controllers. In situations where operational conditions change, a rapid response is achieved within a mere of settling time, exhibiting a minimal percentage overshoot of about and presenting minimal fluctuations.
本文提出了一种先进的控制方法,用于在直流(DC)微电网框架内控制质子交换膜(PEM)电解槽的DC-DC降压变换器。所提出的自适应反步终端滑模控制(ABTSMC)利用物理信息神经网络(PINN)来精确估计和补偿系统不确定性。该复合控制器通过结合反步控制和终端滑模控制(TSMC)实现了跟踪误差的有限时间收敛。所提出的PINN旨在通过利用从解中观察到的训练点来优化无约束参数,确保网络准确地对解的有限部分进行插值。在各种测试设置下,通过硬件在环(HIL)实现验证了所提出的混合控制方法的有效性,确保了测试期间PEM电解槽实际性能的保持。实验验证结果表明,所提出的控制方法具有更大的优势,例如与改进的基于滑模的控制器相比,具有更快的动态响应和对参数不确定性更强的鲁棒性。在运行条件发生变化的情况下,仅在 的调节时间内就能实现快速响应,超调百分比最小约为 ,波动也最小。 (原文中部分关键数据缺失,已按原文格式保留)