文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

乳腺癌中新型转移相关免疫基因特征的鉴定与验证

Identification and Validation of Novel Metastasis-Related Immune Gene Signature in Breast Cancer.

作者信息

Ma Shen, Hao Ran, Lu Yi-Wei, Wang Hui-Po, Hu Jie, Qi Yi-Xin

机构信息

Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, People's Republic of China.

Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China.

出版信息

Breast Cancer (Dove Med Press). 2024 Apr 12;16:199-219. doi: 10.2147/BCTT.S448642. eCollection 2024.


DOI:10.2147/BCTT.S448642
PMID:38634039
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11021863/
Abstract

BACKGROUND: Distant metastasis remains the leading cause of death among patients with breast cancer (BRCA). The process of cancer metastasis involves multiple mechanisms, including compromised immune system. However, not all genes involved in immune function have been comprehensively identified. METHODS: Firstly 1623 BRCA samples, including transcriptome sequencing and clinical information, were acquired from Gene Expression Omnibus (GSE102818, GSE45255, GSE86166) and The Cancer Genome Atlas-BRCA (TCGA-BRCA) dataset. Subsequently, weighted gene co-expression network analysis (WGCNA) was performed using the GSE102818 dataset to identify the most relevant module to the metastasis of BRCA. Besides, ConsensusClusterPlus was applied to divide TCGA-BRCA patients into two subgroups (G1 and G2). In the meantime, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to construct a metastasis-related immune genes (MRIGs)_score to predict the metastasis and progression of cancer. Importantly, the expression of vital genes was validated through reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). RESULTS: The expression pattern of 76 MRIGs screened by WGCNA divided TCGA-BRCA patients into two subgroups (G1 and G2), and the prognosis of G1 group was worse. Also, G1 exhibited a higher mRNA expression level based on stemness index score and Tumor Immune Dysfunction and Exclusion score. In addition, higher MRIGs_score represented the higher probability of progression in BRCA patients. It was worth mentioning that the patients in the G1 group had a high MRIGs_score than those in the G2 group. Importantly, the results of RT-qPCR and IHC demonstrated that fasciculation and elongation protein zeta 1 (FEZ1) and insulin-like growth factor 2 receptor (IGF2R) were risk factors, while interleukin (IL)-1 receptor antagonist (IL1RN) was a protective factor. CONCLUSION: Our study revealed a prognostic model composed of eight immune related genes that could predict the metastasis and progression of BRCA. Higher score represented higher metastasis probability. Besides, the consistency of key genes in BRCA tissue and bioinformatics analysis results from mRNA and protein levels was verified.

摘要

背景:远处转移仍然是乳腺癌(BRCA)患者死亡的主要原因。癌症转移过程涉及多种机制,包括免疫系统受损。然而,并非所有参与免疫功能的基因都已被全面鉴定。 方法:首先,从基因表达综合数据库(GSE102818、GSE45255、GSE86166)和癌症基因组图谱 - 乳腺癌(TCGA - BRCA)数据集中获取1623个BRCA样本,包括转录组测序和临床信息。随后,使用GSE102818数据集进行加权基因共表达网络分析(WGCNA),以识别与BRCA转移最相关的模块。此外,应用ConsensusClusterPlus将TCGA - BRCA患者分为两个亚组(G1和G2)。同时,使用最小绝对收缩和选择算子(LASSO)回归分析构建转移相关免疫基因(MRIGs)评分,以预测癌症的转移和进展。重要的是,通过逆转录定量聚合酶链反应(RT - qPCR)和免疫组织化学(IHC)验证了关键基因的表达。 结果:通过WGCNA筛选出的76个MRIGs的表达模式将TCGA - BRCA患者分为两个亚组(G1和G2),G1组的预后更差。此外,基于干性指数评分和肿瘤免疫功能障碍与排除评分,G1组表现出更高的mRNA表达水平。另外,较高的MRIGs评分代表BRCA患者进展的可能性更高。值得一提的是,G1组患者的MRIGs评分高于G2组。重要的是,RT - qPCR和IHC结果表明,成束和延伸蛋白ζ1(FEZ1)和胰岛素样生长因子2受体(IGF2R)是危险因素,而白细胞介素(IL)-1受体拮抗剂(IL1RN)是保护因素。 结论:我们的研究揭示了一个由八个免疫相关基因组成的预后模型,该模型可以预测BRCA的转移和进展。评分越高,转移概率越高。此外,验证了BRCA组织中关键基因与mRNA和蛋白质水平的生物信息学分析结果的一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/b8d6dbbf1078/BCTT-16-199-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/dbf0f90cc752/BCTT-16-199-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/c2b5675ff911/BCTT-16-199-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/998cfdc029d1/BCTT-16-199-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/986a5b6f3c13/BCTT-16-199-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/60244cade6cc/BCTT-16-199-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/51f36e265542/BCTT-16-199-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/da60db75c23a/BCTT-16-199-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/38fa95634252/BCTT-16-199-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/8d98e352d6f7/BCTT-16-199-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/b8d6dbbf1078/BCTT-16-199-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/dbf0f90cc752/BCTT-16-199-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/c2b5675ff911/BCTT-16-199-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/998cfdc029d1/BCTT-16-199-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/986a5b6f3c13/BCTT-16-199-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/60244cade6cc/BCTT-16-199-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/51f36e265542/BCTT-16-199-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/da60db75c23a/BCTT-16-199-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/38fa95634252/BCTT-16-199-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/8d98e352d6f7/BCTT-16-199-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d71/11021863/b8d6dbbf1078/BCTT-16-199-g0010.jpg

相似文献

[1]
Identification and Validation of Novel Metastasis-Related Immune Gene Signature in Breast Cancer.

Breast Cancer (Dove Med Press). 2024-4-12

[2]
Establishment of a N1-methyladenosine-related risk signature for breast carcinoma by bioinformatics analysis and experimental validation.

Breast Cancer. 2023-7

[3]
Identification and validation of a five-gene prognostic signature based on bioinformatics analyses in breast cancer.

Heliyon. 2023-1-27

[4]
Homologous repair deficiency-associated genes in invasive breast cancer revealed by WGCNA co-expression network analysis and genetic perturbation similarity analysis.

Cell Cycle. 2023-5

[5]
Construction of a prognostic score model for breast cancer based on multi-omics analysis of study on bone metastasis.

Transl Cancer Res. 2024-5-31

[6]
Cuproptosis/ferroptosis-related gene signature is correlated with immune infiltration and predict the prognosis for patients with breast cancer.

Front Pharmacol. 2023-7-13

[7]
Effect of Pyroptosis-Related Genes on the Prognosis of Breast Cancer.

Front Oncol. 2022-7-25

[8]
Integration of bioinformatics and machine learning strategies identifies APM-related gene signatures to predict clinical outcomes and therapeutic responses for breast cancer patients.

Neoplasia. 2023-11

[9]
Construction of Competitive Endogenous RNA Network and Verification of 3-Key LncRNA Signature Associated With Distant Metastasis and Poor Prognosis in Patients With Clear Cell Renal Cell Carcinoma.

Front Oncol. 2021-3-24

[10]
Enhancer RNA SLIT2 Inhibits Bone Metastasis of Breast Cancer Through Regulating P38 MAPK/c-Fos Signaling Pathway.

Front Oncol. 2021-10-15

本文引用的文献

[1]
Emerging phagocytosis checkpoints in cancer immunotherapy.

Signal Transduct Target Ther. 2023-3-7

[2]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[3]
Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation.

Nat Commun. 2023-1-3

[4]
Proteomics analysis of cancer tissues identifies IGF2R as a potential therapeutic target in laryngeal carcinoma.

Front Endocrinol (Lausanne). 2022

[5]
Ca2.2-NFAT2-USP43 axis promotes invadopodia formation and breast cancer metastasis through cortactin stabilization.

Cell Death Dis. 2022-9-22

[6]
Systematic identification of key extracellular proteins as the potential biomarkers in lupus nephritis.

Front Immunol. 2022

[7]
Vitamin D, Th17 Lymphocytes, and Breast Cancer.

Cancers (Basel). 2022-7-27

[8]
The interleukin-1 axis and the tumor immune microenvironment in pancreatic ductal adenocarcinoma.

Neoplasia. 2022-6

[9]
Inhibition of apelin/APJ axis enhances the potential of dendritic cell-based vaccination to modulate TH1 and TH2 cell-related immune responses in an animal model of metastatic breast cancer.

Adv Med Sci. 2022-3

[10]
FEZ1 phosphorylation regulates HSPA8 localization and interferon-stimulated gene expression.

Cell Rep. 2022-2-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索