Md Radzi Mohamad Razlan, Rosli Siti Nor Amira, Yusoff Mohd Hizami Mohd, Abidin Sumaiya Zainal
HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610, Malaysia.
Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Kuantan, Pahang, 26300, Malaysia.
Environ Sci Pollut Res Int. 2025 Jul;32(32):19372-19389. doi: 10.1007/s11356-024-35262-x. Epub 2024 Oct 13.
The production of 1,3-propanediol via in situ glycerol hydrogenolysis and aqueous phase reforming is a promising technique to ensure high product yield with shorter reaction times and lower costs, as demonstrated in this study by investigating the effect of tungsten (W) doping on Ni/CeO catalysts. Physicochemical properties of catalyst were determined using XRD, H-TPR, NH-TPD, BET, and FESEM-EDX techniques, and the catalytic performance was investigated at 230 °C, 20 bar, and 5 wt.% glycerol in an autoclave batch reactor. W doping ranging from 1-7% improved the catalyst's performance, with 3% W in 10% Ni/CeO₂ (3W10NC) achieving the highest yield (2.4%), selectivity (33.3%), and a good conversion rate (72.18%). The effect of reaction parameter on the 3W10NC catalyst showed that increasing pressure and temperature from the initial parameters had a detrimental effect on 1,3-propanediol attributed to the phenomenon called over-hydrogenolysis. Increasing the glycerol concentration to 20 wt.% also had a positive effect, resulting in the highest 1,3-propanediol yield of 22.27%. The effect of reaction time study revealed that the yield of 1,3-propanediol continued to increase steadily, reaching 38.29% after 4 h of reaction under the optimal conditions of 230 °C, 20 bar, and 20 wt.% glycerol. The kinetic study confirmed that the reaction follows first-order reaction with activation energy of 20.104 kJ mol. The catalyst reusability test revealed a decrease in the yield of 1,3-propanediol to 32.55%, likely due to deactivation caused by sintering and leaching, as indicated by the FESEM micrograph, EDX spectra, and NH-TPD.
通过原位甘油氢解和水相重整生产1,3 - 丙二醇是一种很有前景的技术,可确保在更短的反应时间内实现高产品收率并降低成本,本研究通过研究钨(W)掺杂对Ni/CeO催化剂的影响对此进行了证明。使用XRD、H - TPR、NH - TPD、BET和FESEM - EDX技术测定了催化剂的物理化学性质,并在高压釜间歇反应器中于230℃、20 bar和5 wt.%甘油的条件下研究了催化性能。1 - 7%的W掺杂提高了催化剂的性能,10% Ni/CeO₂中3%的W(3W10NC)实现了最高收率(2.4%)、选择性(33.3%)和良好的转化率(72.18%)。反应参数对3W10NC催化剂的影响表明,从初始参数增加压力和温度对1,3 - 丙二醇有不利影响,这归因于所谓的过度氢解现象。将甘油浓度提高到20 wt.%也有积极影响,导致1,3 - 丙二醇的最高收率达到22.27%。反应时间研究的影响表明,1,3 - 丙二醇的收率持续稳定增加,在230℃、20 bar和20 wt.%甘油的最佳条件下反应4小时后达到38.29%。动力学研究证实该反应遵循一级反应,活化能为20.104 kJ mol。催化剂可重复使用性测试表明1,3 - 丙二醇的收率降至32.55%,这可能是由于烧结和浸出导致的失活,FESEM显微照片、EDX光谱和NH - TPD表明了这一点。