School of Computer Science, Canadian International College (CIC), Cairo, Egypt.
Scientific Research School of Egypt (SRSEG), Cairo, Egypt.
Environ Sci Pollut Res Int. 2024 May;31(21):31492-31510. doi: 10.1007/s11356-024-33233-w. Epub 2024 Apr 18.
Resource recycling is considered necessary for sustainable development, especially in smart cities where increased urbanization and the variety of waste generated require the development of automated waste management models. The development of smart technology offers a possible alternative to traditional waste management techniques that are proving insufficient to reduce the harmful effects of trash on the environment. This paper proposes an intelligent waste classification model to enhance the classification of waste materials, focusing on the critical aspect of waste classification. The proposed model leverages the InceptionV3 deep learning architecture, augmented by multi-objective beluga whale optimization (MBWO) for hyperparameter optimization. In MBWO, sensitivity and specificity evaluation criteria are integrated linearly as the objective function to find the optimal values of the dropout period, learning rate, and batch size. A benchmark dataset, namely TrashNet is adopted to verify the proposed model's performance. By strategically integrating MBWO, the model achieves a considerable increase in accuracy and efficiency in identifying waste materials, contributing to more effective waste management strategies while encouraging sustainable waste management practices. The proposed intelligent waste classification model outperformed the state-of-the-art models with an accuracy of 97.75%, specificity of 99.55%, F1-score of 97.58%, and sensitivity of 98.88%.
资源回收被认为是可持续发展的必要条件,特别是在智慧城市中,城市化的增加和产生的各种废物需要开发自动化的废物管理模型。智能技术的发展为传统的废物管理技术提供了一种可能的替代方案,这些技术已被证明不足以减少垃圾对环境的有害影响。本文提出了一种智能垃圾分类模型,以提高废物材料的分类,重点关注废物分类的关键方面。所提出的模型利用了 InceptionV3 深度学习架构,并通过多目标白鲸优化 (MBWO) 进行超参数优化。在 MBWO 中,敏感性和特异性评估标准被线性集成作为目标函数,以找到辍学期、学习率和批次大小的最佳值。采用基准数据集 TrashNet 来验证所提出模型的性能。通过战略性地集成 MBWO,该模型在识别废物材料方面的准确性和效率有了显著提高,有助于制定更有效的废物管理策略,同时鼓励可持续的废物管理实践。所提出的智能废物分类模型的准确率为 97.75%,特异性为 99.55%,F1 得分为 97.58%,灵敏度为 98.88%,优于最先进的模型。