School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Liberty Mills Limited, Karachi, 75700, Pakistan.
School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan.
Environ Res. 2024 Jul 1;252(Pt 3):118953. doi: 10.1016/j.envres.2024.118953. Epub 2024 Apr 16.
Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO), hydrogen (H), nitrogen (N), methane (CH), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.
气体分离膜在各种环境研究和工业应用中至关重要。这些膜旨在选择性地允许一些气体流动,同时阻止其他气体,从而实现各种应用中气体的分离和纯化。因此,由于温室气体和工业气体的浓度不断增加,许多化学和能源生产企业都对快速、节能的气体分离技术产生了浓厚的兴趣。这促使研究人员创新技术,以捕获和分离这些气体,包括膜分离技术。聚合物膜在气体分离中起着重要的作用,它可以从燃料燃烧过程中捕获气体,净化用于塑料生产的化学原料,并隔离纯净的不可燃气体。基于聚氨酯的膜技术在气体分离应用方面具有出色的优势,并且被认为比传统的相变换离方法更节能。本文综述了用于气体分离的聚氨基甲酸酯膜的最新进展,详细说明了其在各种气体泄漏中分离有价值气体(如二氧化碳(CO)、氢气(H)、氮气(N)、甲烷(CH)或混合气体)的用途。由于其出色的化学稳定性、良好的机械性能、较高的渗透性和可变性的微观结构,聚氨酯(PU)是一种优异的材料选择,也是生产气体分离膜的首选候选材料。PU 的存在改善了气体分离膜的许多特性。通过与其他聚合物共混、使用纳米颗粒(如二氧化硅、金属氧化物、氧化铝、沸石)和互穿聚合物网络(IPN)形成等方法进行改性,可以提高基于 PU 的膜的选择性和分离效率。本文批判性地分析了各种气体传输方法和用于制造 PU 膜的选择标准,并讨论了基于 PU 膜的分离方法发展所面临的挑战。