Abdul Wali Khan University Mardan, Mardan, Pakistan.
Higher Education Department Afghanistan, Kart-e-Char, Afghanistan.
Sci Rep. 2024 Apr 18;14(1):8992. doi: 10.1038/s41598-024-59720-1.
This paper aims to introduce a novel family of probability distributions by the well-known method of the T-X family of distributions. The proposed family is called a "Novel Generalized Exponent Power X Family" of distributions. A three-parameters special sub-model of the proposed method is derived and named a "Novel Generalized Exponent Power Weibull" distribution (NGEP-Wei for short). For the proposed family, some statistical properties are derived including the hazard rate function, moments, moment generating function, order statistics, residual life, and reverse residual life. The well-known method of estimation, the maximum likelihood estimation method is used for estimating the model parameters. Besides, a comprehensive Monte Carlo simulation study is conducted to assess the efficacy of this estimation method. Finally, the model selection criterion such as Akaike information criterion (AINC), the correct information criterion (CINC), the Bayesian information criterion (BINC), the Hannan-Quinn information criterion (HQINC), the Cramer-von-Misses (CRMI), and the ANDA (Anderson-Darling) are used for comparison purpose. The comparison of the NGEP-Wei with other rival distributions is made by Two COVID-19 data sets. In terms of performance, we show that the proposed method outperforms the other competing methods included in this study.
本文旨在通过著名的 T-X 分布族方法引入一类新的概率分布族。所提出的分布族被称为“广义指数幂 X 分布族”。从所提出的方法中推导出了一个三参数特殊子模型,并将其命名为“广义指数幂威布尔分布”(NGEP-Wei,简称)。对于所提出的分布族,推导了一些统计性质,包括风险率函数、矩、矩生成函数、顺序统计量、剩余寿命和逆剩余寿命。使用著名的估计方法,最大似然估计法来估计模型参数。此外,还进行了全面的蒙特卡罗模拟研究,以评估该估计方法的有效性。最后,使用 Akaike 信息准则(Akaike Information Criterion,AIC)、正确信息准则(Correct Information Criterion,CINC)、贝叶斯信息准则(Bayesian Information Criterion,BINC)、汉南-奎因信息准则(Hannan-Quinn Information Criterion,HQINC)、Cramer-von-Misses(CRMI)和 Anderson-Darling(ANDA)等模型选择准则进行比较。通过两个 COVID-19 数据集对 NGEP-Wei 与其他竞争分布进行比较。在性能方面,我们表明所提出的方法优于本研究中包含的其他竞争方法。