Suppr超能文献

利用聚类分析识别多系统萎缩的新亚型。

Identifying New Subtypes of Multiple System Atrophy Using Cluster Analysis.

机构信息

Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.

Department of Neurology, Xi'an Central Hospital, Xi'an, Shaanxi, China.

出版信息

J Parkinsons Dis. 2024;14(4):777-795. doi: 10.3233/JPD-230344.

Abstract

BACKGROUND

Multiple system atrophy (MSA) is a disease with diverse symptoms and the commonly used classifications, MSA-P and MSA-C, do not cover all the different symptoms seen in MSA patients. Additionally, these classifications do not provide information about how the disease progresses over time or the expected outcome for patients.

OBJECTIVE

To explore clinical subtypes of MSA with a natural disease course through a data-driven approach to assist in the diagnosis and treatment of MSA.

METHODS

We followed 122 cases of MSA collected from 3 hospitals for 3 years. Demographic characteristics, age of onset, clinical signs, scale assessment scores, and auxiliary examination were collected. Age at onset; time from onset to assisted ambulation; and UMSARS I, II, and IV, COMPASS-31, ICARS, and UPDRS III scores were selected as clustering elements. K-means, partitioning around medoids, and self-organizing maps were used to analyze the clusters.

RESULTS

The results of all three clustering methods supported the classification of three MSA subtypes: The aggressive progression subtype (MSA-AP), characterized by mid-to-late onset, rapid progression and severe clinical symptoms; the typical subtype (MSA-T), characterized by mid-to-late onset, moderate progression and moderate severity of clinical symptoms; and the early-onset slow progression subtype (MSA-ESP), characterized by early-to-mid onset, slow progression and mild clinical symptoms.

CONCLUSIONS

We divided MSA into three subtypes and summarized the characteristics of each subtype. According to the clustering results, MSA patients were divided into three completely different types according to the severity of symptoms, the speed of disease progression, and the age of onset.

摘要

背景

多系统萎缩(MSA)是一种症状多样的疾病,常用的分类方法 MSA-P 和 MSA-C 并不能涵盖 MSA 患者的所有不同症状。此外,这些分类方法也不能提供关于疾病随时间推移如何进展以及患者预期结果的信息。

目的

通过数据驱动的方法探索 MSA 的临床亚型,以协助 MSA 的诊断和治疗。

方法

我们对 3 家医院收集的 122 例 MSA 病例进行了 3 年的随访。收集了人口统计学特征、发病年龄、临床体征、量表评估评分和辅助检查等数据。选择发病年龄、从发病到辅助行走的时间、UMSARS I、II 和 IV、COMPASS-31、ICARS 和 UPDRS III 评分作为聚类元素。采用 K-均值、中位数分割和自组织映射对聚类进行分析。

结果

三种聚类方法的结果均支持将 MSA 分为三种亚型:进展迅速的侵袭性亚型(MSA-AP),表现为中晚期发病、快速进展和严重的临床症状;典型亚型(MSA-T),表现为中晚期发病、中度进展和中度严重的临床症状;以及早发性缓慢进展亚型(MSA-ESP),表现为中早期发病、缓慢进展和轻度临床症状。

结论

我们将 MSA 分为三个亚型,并总结了每个亚型的特征。根据聚类结果,MSA 患者根据症状严重程度、疾病进展速度和发病年龄分为三种完全不同的类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59f8/11191464/07c6e7d662b5/jpd-14-jpd230344-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验