Song Yanyu, Sun Xianbo, Nghiem Long D, Duan Jun, Liu Wen, Liu Yongdi, Cai Zhengqing
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China.
Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
J Colloid Interface Sci. 2024 Aug;667:321-337. doi: 10.1016/j.jcis.2024.04.096. Epub 2024 Apr 15.
Building a heterojunction is a fascinating option to guarantee sufficient carrier separation and transfer efficiency, but the mechanism of charge migration at the heterojunction interface has not been thoroughly studied. Herein, MIL-53(Fe)/BiOI photocatalyst with a Z-scheme heterojunction structure is constructed, which achieves efficient photocatalytic decontamination under solar light. Driven by the newly-built internal electric field (IEF), the formation of Fe-O-Bi electron migration channel allows for rapid separation and transfer of charge carriers at the heterojunction interface, confirmed by the material characterization and density functional theory (DFT) calculation. The narrower band gap and improved visible light response also contribute to the enhanced photocatalytic activity of composite materials. With levofloxacin as the target pollutant, the optimal MIL-53(Fe)/BiOI achieves complete removal of pollutant within 150 min, the photocatalysis rate of which is ca. 4.4 and 26.0 times that of pure BiOI and MIL-53(Fe), respectively. Simultaneously, the optimal composite material exhibits satisfactory photodegradation of seven fluoroquinolones, and the photocatalysis rates are as follows: lomefloxacin > ciprofloxacin > enrofloxacin > norfloxacin > pefloxacin > levofloxacin > marbofloxacin. DFT calculations reveal a positive relationship between degradation rate and Fukui index (ƒ) of main carbon atoms in seven fluoroquinolones. This study sheds light on the existence of electron migration channels at Z-scheme heterojunction interface to ensure sufficient photoinduced carrier transfer, and reveals the influence of pollutant structure on photolysis rate.
构建异质结是保证足够的载流子分离和转移效率的一种引人入胜的选择,但异质结界面处的电荷迁移机制尚未得到充分研究。在此,构建了具有Z型异质结结构的MIL-53(Fe)/BiOI光催化剂,其在太阳光下实现了高效的光催化去污。在新建的内建电场(IEF)驱动下,Fe-O-Bi电子迁移通道的形成使得异质结界面处的电荷载流子能够快速分离和转移,这通过材料表征和密度泛函理论(DFT)计算得到证实。较窄的带隙和改善的可见光响应也有助于提高复合材料的光催化活性。以左氧氟沙星为目标污染物,最优的MIL-53(Fe)/BiOI在150分钟内实现了污染物的完全去除,其光催化速率分别约为纯BiOI和MIL-53(Fe)的4.4倍和26.0倍。同时,最优的复合材料对七种氟喹诺酮类药物表现出令人满意的光降解效果,光催化速率如下:洛美沙星>环丙沙星>恩诺沙星>诺氟沙星>培氟沙星>左氧氟沙星>马波沙星。DFT计算揭示了七种氟喹诺酮类药物中主要碳原子的降解速率与福井指数(ƒ)之间的正相关关系。本研究揭示了Z型异质结界面处电子迁移通道的存在,以确保足够的光生载流子转移,并揭示了污染物结构对光解速率的影响。