Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
National Physical Laboratory, Teddington, United Kingdom.
Phys Med Biol. 2024 May 8;69(10). doi: 10.1088/1361-6560/ad40f9.
. In this experimental work we compared the determination of absorbed dose to water using four ionization chambers (ICs), a PTW-34045 Advanced Markus, a PTW-34001 Roos, an IBA-PPC05 and a PTW-30012 Farmer, irradiated under the same conditions in one continuous- and in two pulsed-scanned proton beams.. The ICs were positioned at 2 cm depth in a water phantom in four square-field single-energy scanned-proton beams with nominal energies between 80 and 220 MeV and in the middle of 10 × 10 × 10 cmdose cubes centered at 10 cm or 12.5 cm depth in water. The water-equivalent thickness (WET) of the entrance window and the effective point of measurement was considered when positioning the plane parallel (PP) ICs and the cylindrical ICs, respectively. To reduce uncertainties, all ICs were calibrated at the same primary standards laboratory. We used the beam quality () correction factors for the ICs under investigation from IAEA TRS-398, the newly calculated Monte Carlo (MC) values and the anticipated IAEA TRS-398 updated recommendations.. Dose differences among the four ICs ranged between 1.5% and 3.7% using both the TRS-398 and the newly recommendedvalues. The spread among the chambers is reduced with the newlyvalues. The largest differences were observed between the rest of the ICs and the IBA-PPC05 IC, obtaining lower dose with the IBA-PPC05.. We provide experimental data comparing different types of chambers in different proton beam qualities. The observed dose differences between the ICs appear to be related to inconsistencies in the determination of thevalues. For PP ICs, MC studies account for the physical thickness of the entrance window rather than the WET. The additional energy loss that the wall material invokes is not negligible for the IBA-PPC05 and might partially explain the lowvalues determined for this IC. To resolve this inconsistency and to benchmark MC values,values measured using calorimetry are needed.
. 在这项实验工作中,我们比较了在同一条件下用四种电离室(IC),即 PTW-34045 高级 Markus、PTW-34001 Roos、IBA-PPC05 和 PTW-30012 Farmer,在连续扫描和两个脉冲扫描质子束中测量水吸收剂量的情况。在四个正方形单能扫描质子束中,将 IC 放置在水模体中 2 厘米深度处,束能标称值在 80 至 220 MeV 之间,在水中心的 10×10×10 cm3 剂量立方体内,位于 10 或 12.5 厘米深度处。在放置平面平行(PP)IC 和圆柱形 IC 时,分别考虑了入口窗的水等效厚度(WET)和有效测量点。为了降低不确定性,所有 IC 都在同一主要标准实验室进行了校准。我们使用 IAEA TRS-398 中的束品质()校正因子、新计算的蒙特卡罗(MC)值和预期的 IAEA TRS-398 更新建议,对所研究的 IC 进行校正。使用 TRS-398 和新推荐值,四个 IC 之间的剂量差异在 1.5%至 3.7%之间。使用新值,各腔室之间的差异减小。与其余 IC 相比,IBA-PPC05 IC 的差异最大,用 IBA-PPC05 测量的剂量较低。我们提供了比较不同类型 IC 在不同质子束质下的实验数据。观察到的 IC 之间的剂量差异似乎与值的确定不一致有关。对于 PP IC,MC 研究考虑了入口窗的物理厚度,而不是 WET。壁材料引起的额外能量损失对于 IBA-PPC05 来说不可忽略,这可能部分解释了为该 IC 确定的低值。为了解决这一不一致性并基准 MC 值,需要使用量热法测量值。