Suppr超能文献

扫描质子束治疗中电离室剂量学的质量校正因子的一致性。

Consistency in quality correction factors for ionization chamber dosimetry in scanned proton beam therapy.

机构信息

Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200, Brussels, Belgium.

ICTEAM Institute, Université catholique de Louvain, Chemin du Cyclotron 6, 1348, Louvain-la-Neuve, Belgium.

出版信息

Med Phys. 2017 Sep;44(9):4919-4927. doi: 10.1002/mp.12434. Epub 2017 Aug 8.

Abstract

PURPOSE

The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (k ). Pencil beam scanning (PBS) systems cannot approximate reference conditions using a single spot. However, dose distributions requested in TRS-398 can be reproduced with PBS using a combination of spots. This study aims to demonstrate, using Monte Carlo (MC) simulations, that k factors computed/measured for broad beams can be used with scanned beams for similar reference dose distributions with no additional significant uncertainty.

METHODS

We consider the Alfonso formalism usually employed for nonstandard photon beams. To approach reference conditions similar as IAEA TRS-398 and the associated dose distributions, PBS must combine many pencil beams with range or energy modulation and shaping techniques that differ from those used in passive systems (broad beams). In order to evaluate the impact of these differences on k factors, ionization chamber responses are computed with MC (Geant4 9.6) in three different proton beams, with their corresponding quality factors (Q), producing a 10 × 10 cm field with a flat dose distribution for (a) a dedicated scanned pencil beam (Q ), (b) a hypothetical proton source (Q ), and (c) a double-scattering beam (Q ). The tested ionization chamber cavities are a 2 × 2 × 0.2 mm³ air cavity, a Roos-type ionization chamber, and a Farmer-type ionization chamber.

RESULTS AND DISCUSSION

Ranges of Q , Q , and Q are consistent within 0.4 mm. Flatnesses of dose distributions are better than 0.5%. Calculated kQpbs,Qhypfpbs,fref is 0.999 ± 0.002 for the air cavity and the Farmer-type ionization chamber and 1.001 ± 0.002 for the Roos-type ionization chamber. The quality correction factors kQpbs,Qdsfpbs,fref is 0.999 ± 0.002 for the Farmer-type and Roos-type ionization chambers and 1.001 ± 0.001 for the Roos-type ionization chamber.

CONCLUSION

The Alfonso formalism was applied to scanned proton beams. In our MC simulations, neither the difference in the beam profiles (scanned beam vs hypothetical beam) nor the different incident beam energies influenced significantly the beam correction factors. This suggests that ionization chamber quality correction factors in scanned or broad proton beams are indistinguishable within the calculation uncertainties provided dose distributions achieved by both modalities are similar and compliant with the TRS-398 reference conditions.

摘要

目的

国际原子能机构 TRS-398 实践准则详细说明了使用电离室进行质子束参考剂量测定的参考条件,以及所需的束质量校正因子(k)。铅笔束扫描(PBS)系统无法使用单个点近似参考条件。然而,TRS-398 中要求的剂量分布可以使用组合点使用 PBS 再现。本研究旨在通过蒙特卡罗(MC)模拟证明,对于类似的参考剂量分布,使用扫描束可以使用宽束计算/测量的 k 因子,而不会增加额外的显著不确定性。

方法

我们考虑通常用于非标准光子束的阿方索公式。为了接近与 IAEA TRS-398 类似的参考条件和相关的剂量分布,PBS 必须结合许多铅笔束,这些铅笔束具有不同的射程或能量调制和成型技术,与被动系统(宽束)中使用的技术不同。为了评估这些差异对 k 因子的影响,使用 MC(Geant4 9.6)在三个不同的质子束中计算电离室响应,这些质子束具有相应的质量因子(Q),在(a)专用扫描铅笔束(Qpbs)中产生 10×10 cm 场,(b)假设的质子源(Qhyp)和(c)双散射束(Qds)中产生平坦剂量分布。测试的电离室腔是 2×2×0.2 mm³空气腔、Roos 型电离室和 Farmer 型电离室。

结果与讨论

Qpbs、Qhyp 和 Qds 的 Q 值范围在 0.4 mm 内一致。剂量分布的平坦度优于 0.5%。对于空气腔和 Farmer 型电离室,计算的 kQpbs、Qhyp 和 kfref 为 0.999±0.002,对于 Roos 型电离室为 1.001±0.002。对于 Farmer 型和 Roos 型电离室,kQpbs、Qds 和 kfref 为 0.999±0.002,对于 Roos 型电离室为 1.001±0.001。

结论

阿方索公式被应用于扫描质子束。在我们的 MC 模拟中,无论是束轮廓的差异(扫描束与假设束)还是不同的入射束能量都没有显著影响束校正因子。这表明,在剂量分布相似且符合 TRS-398 参考条件的情况下,扫描或宽质子束中的电离室质量校正因子在计算不确定性内是不可区分的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验