文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的乳腺微焦点 CBCT 成像中伪影抑制。

Artifact suppression for breast specimen imaging in micro CBCT using deep learning.

机构信息

Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.

Medical Imaging System Research Team, Assistive Technology and Medical Devices Research Group, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathum Thani, Thailand.

出版信息

BMC Med Imaging. 2024 Feb 6;24(1):34. doi: 10.1186/s12880-024-01216-5.


DOI:10.1186/s12880-024-01216-5
PMID:38321390
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10845762/
Abstract

BACKGROUND: Cone-beam computed tomography (CBCT) has been introduced for breast-specimen imaging to identify a free resection margin of abnormal tissues in breast conservation. As well-known, typical micro CT consumes long acquisition and computation times. One simple solution to reduce the acquisition scan time is to decrease of the number of projections, but this method generates streak artifacts on breast specimen images. Furthermore, the presence of a metallic-needle marker on a breast specimen causes metal artifacts that are prominently visible in the images. In this work, we propose a deep learning-based approach for suppressing both streak and metal artifacts in CBCT. METHODS: In this work, sinogram datasets acquired from CBCT and a small number of projections containing metal objects were used. The sinogram was first modified by removing metal objects and up sampling in the angular direction. Then, the modified sinogram was initialized by linear interpolation and synthesized by a modified neural network model based on a U-Net structure. To obtain the reconstructed images, the synthesized sinogram was reconstructed using the traditional filtered backprojection (FBP) approach. The remaining residual artifacts on the images were further handled by another neural network model, ResU-Net. The corresponding denoised image was combined with the extracted metal objects in the same data positions to produce the final results. RESULTS: The image quality of the reconstructed images from the proposed method was improved better than the images from the conventional FBP, iterative reconstruction (IR), sinogram with linear interpolation, denoise with ResU-Net, sinogram with U-Net. The proposed method yielded 3.6 times higher contrast-to-noise ratio, 1.3 times higher peak signal-to-noise ratio, and 1.4 times higher structural similarity index (SSIM) than the traditional technique. Soft tissues around the marker on the images showed good improvement, and the mainly severe artifacts on the images were significantly reduced and regulated by the proposed. CONCLUSIONS: Our proposed method performs well reducing streak and metal artifacts in the CBCT reconstructed images, thus improving the overall breast specimen images. This would be beneficial for clinical use.

摘要

背景:锥形束计算机断层扫描(CBCT)已被引入用于乳房标本成像,以识别保乳术中异常组织的游离切除边缘。众所周知,典型的微 CT 需要较长的采集和计算时间。减少采集扫描时间的一个简单方法是减少投影数量,但这种方法会在乳房标本图像上产生条纹伪影。此外,乳房标本上的金属针标记会导致金属伪影,这些伪影在图像中非常明显。在这项工作中,我们提出了一种基于深度学习的方法来抑制 CBCT 中的条纹和金属伪影。

方法:在这项工作中,使用了从 CBCT 采集的正弦图数据集和包含金属物体的少量投影。正弦图首先通过去除金属物体和在角度方向上的上采样来修改。然后,通过基于 U-Net 结构的修改后的神经网络模型,用线性插值初始化修改后的正弦图。为了获得重建图像,用传统的滤波反投影(FBP)方法重建合成的正弦图。通过另一个神经网络模型 ResU-Net 进一步处理图像上剩余的残余伪影。将具有相同数据位置的提取的金属物体的合成图像与对应的去噪图像相结合,以产生最终结果。

结果:与传统的 FBP、迭代重建(IR)、线性插值的正弦图、ResU-Net 去噪、U-Net 正弦图相比,所提出的方法重建图像的图像质量得到了更好的改善。与传统技术相比,该方法的对比度噪声比提高了 3.6 倍,峰值信噪比提高了 1.3 倍,结构相似性指数(SSIM)提高了 1.4 倍。图像上标记周围的软组织得到了很好的改善,图像上的主要严重伪影得到了显著减少和调节。

结论:我们提出的方法在 CBCT 重建图像中减少条纹和金属伪影的效果很好,从而提高了整体乳房标本图像的质量。这将有益于临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/279d92587d90/12880_2024_1216_Fig23_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/7736bc118eb9/12880_2024_1216_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/c920e899d608/12880_2024_1216_Figf_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/b117b30edf6c/12880_2024_1216_Figg_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/a035af373379/12880_2024_1216_Figh_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/2ae8b06f2402/12880_2024_1216_Figi_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/8750d7c5d246/12880_2024_1216_Figj_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/1e4513026302/12880_2024_1216_Figk_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/3a2e268fda55/12880_2024_1216_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/e712fae82739/12880_2024_1216_Figm_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/279d92587d90/12880_2024_1216_Fig23_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/7736bc118eb9/12880_2024_1216_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/c920e899d608/12880_2024_1216_Figf_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/b117b30edf6c/12880_2024_1216_Figg_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/a035af373379/12880_2024_1216_Figh_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/2ae8b06f2402/12880_2024_1216_Figi_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/8750d7c5d246/12880_2024_1216_Figj_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/1e4513026302/12880_2024_1216_Figk_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/3a2e268fda55/12880_2024_1216_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/e712fae82739/12880_2024_1216_Figm_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3e/10845762/279d92587d90/12880_2024_1216_Fig23_HTML.jpg

相似文献

[1]
Artifact suppression for breast specimen imaging in micro CBCT using deep learning.

BMC Med Imaging. 2024-2-6

[2]
Deep residual network-based projection interpolation and post-processing techniques for thoracic patient CBCT reconstruction.

Med Phys. 2025-7

[3]
Image quality evaluation in deep-learning-based CT noise reduction using virtual imaging trial methods: Contrast-dependent spatial resolution.

Med Phys. 2024-8

[4]
Super-resolution CBCT on a new generation flat panel imager of a C-arm gantry linear accelerator.

Med Phys. 2025-7

[5]
X-ray CT metal artifact reduction using neural attenuation field prior.

Med Phys. 2025-7

[6]
Optimization-based image reconstruction regularized with inter-spectral structural similarity for limited-angle dual-energy cone-beam CT.

Phys Med Biol. 2025-7-11

[7]
Leveraging Physics-Based Synthetic MR Images and Deep Transfer Learning for Artifact Reduction in Echo-Planar Imaging.

AJNR Am J Neuroradiol. 2025-4-2

[8]
ICD lead and primary metal artifact detection and inpainting in cardiac CT images.

Med Phys. 2025-7

[9]
Enhancing Image Quality in Dental-Maxillofacial CBCT: The Impact of Iterative Reconstruction and AI on Noise Reduction-A Systematic Review.

J Clin Med. 2025-6-13

[10]
Non-orthogonal kV imaging guided patient position verification in non-coplanar radiation therapy with dataset-free implicit neural representation.

Med Phys. 2025-5-19

本文引用的文献

[1]
Truncation effect reduction for fast iterative reconstruction in cone-beam CT.

BMC Med Imaging. 2022-9-5

[2]
Low-dose CT imaging via cascaded ResUnet with spectrum loss.

Methods. 2022-6

[3]
Sinogram + image domain neural network approach for metal artifact reduction in low-dose cone-beam computed tomography.

J Med Imaging (Bellingham). 2021-9

[4]
Deep learning-based metal artefact reduction in PET/CT imaging.

Eur Radiol. 2021-8

[5]
Review of methods for intraoperative margin detection for breast conserving surgery.

J Biomed Opt. 2018-10

[6]
X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT.

Biomed Res Int. 2016

[7]
Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction.

IEEE Trans Med Imaging. 2015-1

[8]
Experiment-based scatter correction for cone-beam computed tomography using the statistical method.

Annu Int Conf IEEE Eng Med Biol Soc. 2013

[9]
Micro-computed tomography (Micro-CT): a novel approach for intraoperative breast cancer specimen imaging.

Breast Cancer Res Treat. 2013-5-14

[10]
Penalized-likelihood reconstruction for metal artifact reduction in cone-beam CT.

Annu Int Conf IEEE Eng Med Biol Soc. 2008

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索