Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 100, 100, Taipei, Taiwan.
EverFortune.AI Co., Ltd, Taichung, Taiwan.
BMC Med Imaging. 2024 Apr 19;24(1):92. doi: 10.1186/s12880-024-01260-1.
The study aimed to develop and validate a deep learning-based Computer Aided Triage (CADt) algorithm for detecting pleural effusion in chest radiographs using an active learning (AL) framework. This is aimed at addressing the critical need for a clinical grade algorithm that can timely diagnose pleural effusion, which affects approximately 1.5 million people annually in the United States.
In this multisite study, 10,599 chest radiographs from 2006 to 2018 were retrospectively collected from an institution in Taiwan to train the deep learning algorithm. The AL framework utilized significantly reduced the need for expert annotations. For external validation, the algorithm was tested on a multisite dataset of 600 chest radiographs from 22 clinical sites in the United States and Taiwan, which were annotated by three U.S. board-certified radiologists.
The CADt algorithm demonstrated high effectiveness in identifying pleural effusion, achieving a sensitivity of 0.95 (95% CI: [0.92, 0.97]) and a specificity of 0.97 (95% CI: [0.95, 0.99]). The area under the receiver operating characteristic curve (AUC) was 0.97 (95% DeLong's CI: [0.95, 0.99]). Subgroup analyses showed that the algorithm maintained robust performance across various demographics and clinical settings.
This study presents a novel approach in developing clinical grade CADt solutions for the diagnosis of pleural effusion. The AL-based CADt algorithm not only achieved high accuracy in detecting pleural effusion but also significantly reduced the workload required for clinical experts in annotating medical data. This method enhances the feasibility of employing advanced technological solutions for prompt and accurate diagnosis in medical settings.
本研究旨在开发和验证一种基于深度学习的计算机辅助分诊(CADt)算法,用于使用主动学习(AL)框架检测胸部 X 光片中的胸腔积液。这是为了满足对临床级算法的迫切需求,这种算法可以及时诊断胸腔积液,而美国每年约有 150 万人受到胸腔积液的影响。
在这项多中心研究中,从台湾的一家机构回顾性地收集了 2006 年至 2018 年的 10599 张胸部 X 光片,用于训练深度学习算法。AL 框架大大减少了对专家注释的需求。为了外部验证,该算法在来自美国和台湾的 22 个临床站点的 600 张胸部 X 光片的多站点数据集上进行了测试,这些 X 光片由 3 名美国 board-certified 放射科医生进行了注释。
CADt 算法在识别胸腔积液方面表现出很高的有效性,灵敏度为 0.95(95%CI:[0.92,0.97]),特异性为 0.97(95%CI:[0.95,0.99])。受试者工作特征曲线下的面积(AUC)为 0.97(95%DeLong 的 CI:[0.95,0.99])。亚组分析表明,该算法在各种人群和临床环境中保持了稳健的性能。
本研究提出了一种开发用于诊断胸腔积液的临床级 CADt 解决方案的新方法。基于 AL 的 CADt 算法不仅在检测胸腔积液方面达到了很高的准确性,而且还大大减少了临床专家在注释医疗数据方面的工作量。这种方法提高了在医疗环境中采用先进技术解决方案进行快速准确诊断的可行性。