文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

主动学习和人机交互深度学习在医学图像分析中的应用调查。

A survey on active learning and human-in-the-loop deep learning for medical image analysis.

机构信息

Department of Computing, Imperial College London, UK.

Department of Imaging Sciences, King's College London, UK.

出版信息

Med Image Anal. 2021 Jul;71:102062. doi: 10.1016/j.media.2021.102062. Epub 2021 Apr 9.


DOI:10.1016/j.media.2021.102062
PMID:33901992
Abstract

Fully automatic deep learning has become the state-of-the-art technique for many tasks including image acquisition, analysis and interpretation, and for the extraction of clinically useful information for computer-aided detection, diagnosis, treatment planning, intervention and therapy. However, the unique challenges posed by medical image analysis suggest that retaining a human end-user in any deep learning enabled system will be beneficial. In this review we investigate the role that humans might play in the development and deployment of deep learning enabled diagnostic applications and focus on techniques that will retain a significant input from a human end user. Human-in-the-Loop computing is an area that we see as increasingly important in future research due to the safety-critical nature of working in the medical domain. We evaluate four key areas that we consider vital for deep learning in the clinical practice: (1) Active Learning to choose the best data to annotate for optimal model performance; (2) Interaction with model outputs - using iterative feedback to steer models to optima for a given prediction and offering meaningful ways to interpret and respond to predictions; (3) Practical considerations - developing full scale applications and the key considerations that need to be made before deployment; (4) Future Prospective and Unanswered Questions - knowledge gaps and related research fields that will benefit human-in-the-loop computing as they evolve. We offer our opinions on the most promising directions of research and how various aspects of each area might be unified towards common goals.

摘要

深度学习已经成为许多任务的最新技术,包括图像采集、分析和解释,以及从计算机辅助检测、诊断、治疗计划、干预和治疗中提取临床有用信息。然而,医学图像分析所带来的独特挑战表明,在任何启用深度学习的系统中保留人类最终用户都将是有益的。在这篇综述中,我们调查了人类在开发和部署启用深度学习的诊断应用程序中可能扮演的角色,并专注于那些将保留人类最终用户大量输入的技术。人机交互计算是我们认为在未来研究中越来越重要的一个领域,因为在医疗领域工作具有安全关键性质。我们评估了我们认为对临床实践中的深度学习至关重要的四个关键领域:(1)主动学习,选择最佳数据进行标注,以获得最佳模型性能;(2)与模型输出的交互 - 使用迭代反馈来引导模型针对给定预测达到最优,并提供有意义的方式来解释和响应预测;(3)实际考虑因素 - 开发全面的应用程序以及在部署之前需要考虑的关键因素;(4)未来展望和未解决的问题 - 知识差距和相关研究领域,随着它们的发展,将使人机交互计算受益。我们对最有前途的研究方向提出了自己的看法,并讨论了每个领域的各个方面如何朝着共同的目标统一起来。

相似文献

[1]
A survey on active learning and human-in-the-loop deep learning for medical image analysis.

Med Image Anal. 2021-7

[2]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[3]
Deep Learning in Microscopy Image Analysis: A Survey.

IEEE Trans Neural Netw Learn Syst. 2017-11-22

[4]
A survey on incorporating domain knowledge into deep learning for medical image analysis.

Med Image Anal. 2021-4

[5]
A Tour of Unsupervised Deep Learning for Medical Image Analysis.

Curr Med Imaging. 2021

[6]
Survey on deep learning for pulmonary medical imaging.

Front Med. 2020-8

[7]
RIL-Contour: a Medical Imaging Dataset Annotation Tool for and with Deep Learning.

J Digit Imaging. 2019-8

[8]
Deep computational pathology in breast cancer.

Semin Cancer Biol. 2021-7

[9]
Multi-task deep learning for medical image computing and analysis: A review.

Comput Biol Med. 2023-2

[10]
Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.

Curr Med Imaging. 2020

引用本文的文献

[1]
Explainable AI in medicine: challenges of integrating XAI into the future clinical routine.

Front Radiol. 2025-8-5

[2]
An interactive deep-learning workflow for head and neck gross tumour volume segmentation.

Phys Imaging Radiat Oncol. 2025-8-5

[3]
Automatic segmentation of the spinal cord nerve rootlets.

Imaging Neurosci (Camb). 2024-7-2

[4]
AI-directed voxel extraction and volume EM identify intrusions as sites of mitochondrial contact.

J Cell Biol. 2025-10-6

[5]
Autonomous Small-Angle Scattering for Accelerated Soft Material Formulation Optimization.

Chem Mater. 2025-6-6

[6]
Automated Workflow for Processing and Classifying Dental Radiographs: A Hands-On Approach.

Cureus. 2025-5-26

[7]
A Comprehensive Drift-Adaptive Framework for Sustaining Model Performance in COVID-19 Detection From Dynamic Cough Audio Data: Model Development and Validation.

J Med Internet Res. 2025-6-3

[8]
Comparison of Deep Transfer Learning Against Contrastive Learning in Industrial Quality Applications for Heavily Unbalanced Data Scenarios When Data Augmentation Is Limited.

Sensors (Basel). 2025-5-12

[9]
Burst of gyrification in the human brain after birth.

Commun Biol. 2025-5-26

[10]
Editorial for the Special Issue "Medical Data Processing and Analysis-2nd Edition".

Diagnostics (Basel). 2025-5-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索