Suppr超能文献

因果推理方法在医学个体参与者数据荟萃分析中的应用:通过新提出的报告指南解决数据处理和报告差距。

Application of causal inference methods in individual-participant data meta-analyses in medicine: addressing data handling and reporting gaps with new proposed reporting guidelines.

机构信息

Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany.

Center for Interdisciplinary Addiction Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

BMC Med Res Methodol. 2024 Apr 19;24(1):91. doi: 10.1186/s12874-024-02210-9.

Abstract

Observational data provide invaluable real-world information in medicine, but certain methodological considerations are required to derive causal estimates. In this systematic review, we evaluated the methodology and reporting quality of individual-level patient data meta-analyses (IPD-MAs) conducted with non-randomized exposures, published in 2009, 2014, and 2019 that sought to estimate a causal relationship in medicine. We screened over 16,000 titles and abstracts, reviewed 45 full-text articles out of the 167 deemed potentially eligible, and included 29 into the analysis. Unfortunately, we found that causal methodologies were rarely implemented, and reporting was generally poor across studies. Specifically, only three of the 29 articles used quasi-experimental methods, and no study used G-methods to adjust for time-varying confounding. To address these issues, we propose stronger collaborations between physicians and methodologists to ensure that causal methodologies are properly implemented in IPD-MAs. In addition, we put forward a suggested checklist of reporting guidelines for IPD-MAs that utilize causal methods. This checklist could improve reporting thereby potentially enhancing the quality and trustworthiness of IPD-MAs, which can be considered one of the most valuable sources of evidence for health policy.

摘要

观察性数据为医学提供了非常有价值的真实世界信息,但需要考虑某些方法学因素才能得出因果估计。在本次系统评价中,我们评估了 2009 年、2014 年和 2019 年发表的、针对非随机暴露进行个体水平患者数据荟萃分析(IPD-MA)的方法学和报告质量,这些研究旨在估计医学中的因果关系。我们筛选了超过 16000 个标题和摘要,对 167 篇被认为可能符合条件的全文进行了回顾,其中 29 篇被纳入分析。遗憾的是,我们发现因果方法很少得到实施,报告质量在研究之间普遍较差。具体而言,29 篇文章中仅有 3 篇使用了准实验方法,没有研究使用 G 方法来调整时变混杂因素。为了解决这些问题,我们建议医生和方法学家之间加强合作,以确保在 IPD-MA 中正确实施因果方法。此外,我们提出了一个建议的因果方法 IPD-MA 报告指南检查表。该检查表可以提高报告质量,从而潜在地提高 IPD-MA 的质量和可信度,这可以被认为是健康政策最有价值的证据来源之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c4/11027270/fd3a2cbf0444/12874_2024_2210_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验