Suppr超能文献

分形复杂网络的标度理论。

Scaling theory of fractal complex networks.

作者信息

Fronczak Agata, Fronczak Piotr, Samsel Mateusz J, Makulski Kordian, Łepek Michał, Mrowinski Maciej J

机构信息

Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland.

出版信息

Sci Rep. 2024 Apr 20;14(1):9079. doi: 10.1038/s41598-024-59765-2.

Abstract

We show that fractality in complex networks arises from the geometric self-similarity of their built-in hierarchical community-like structure, which is mathematically described by the scale-invariant equation for the masses of the boxes with which we cover the network when determining its box dimension. This approach-grounded in both scaling theory of phase transitions and renormalization group theory-leads to the consistent scaling theory of fractal complex networks, which complements the collection of scaling exponents with several new ones and reveals various relationships between them. We propose the introduction of two classes of exponents: microscopic and macroscopic, characterizing the local structure of fractal complex networks and their global properties, respectively. Interestingly, exponents from both classes are related to each other and only a few of them (three out of seven) are independent, thus bridging the local self-similarity and global scale-invariance in fractal networks. We successfully verify our findings in real networks situated in various fields (information-the World Wide Web, biological-the human brain, and social-scientific collaboration networks) and in several fractal network models.

摘要

我们表明,复杂网络中的分形性源于其内在的层次化类社区结构的几何自相似性,在确定网络的盒维数时,这种结构在数学上由覆盖网络的盒子质量的尺度不变方程描述。这种基于相变的标度理论和重整化群理论的方法,导致了分形复杂网络的一致标度理论,该理论用几个新的标度指数补充了标度指数的集合,并揭示了它们之间的各种关系。我们建议引入两类指数:微观指数和宏观指数,分别表征分形复杂网络的局部结构及其全局特性。有趣的是,这两类指数相互关联,其中只有少数几个(七个中的三个)是独立的,从而在分形网络中架起了局部自相似性和全局尺度不变性之间的桥梁。我们在位于不同领域的真实网络(信息领域——万维网、生物领域——人类大脑、社会领域——科学合作网络)以及几个分形网络模型中成功验证了我们的发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验