Suppr超能文献

复杂的网络驱动传染病现象的隐藏几何形状。

The hidden geometry of complex, network-driven contagion phenomena.

机构信息

Robert-Koch-Institute, Seestraße 10, 13353 Berlin, Germany.

出版信息

Science. 2013 Dec 13;342(6164):1337-42. doi: 10.1126/science.1245200.

Abstract

The global spread of epidemics, rumors, opinions, and innovations are complex, network-driven dynamic processes. The combined multiscale nature and intrinsic heterogeneity of the underlying networks make it difficult to develop an intuitive understanding of these processes, to distinguish relevant from peripheral factors, to predict their time course, and to locate their origin. However, we show that complex spatiotemporal patterns can be reduced to surprisingly simple, homogeneous wave propagation patterns, if conventional geographic distance is replaced by a probabilistically motivated effective distance. In the context of global, air-traffic-mediated epidemics, we show that effective distance reliably predicts disease arrival times. Even if epidemiological parameters are unknown, the method can still deliver relative arrival times. The approach can also identify the spatial origin of spreading processes and successfully be applied to data of the worldwide 2009 H1N1 influenza pandemic and 2003 SARS epidemic.

摘要

传染病、谣言、意见和创新在全球的传播是复杂的、受网络驱动的动态过程。潜在网络的多尺度组合性质和固有异质性使得很难直观地理解这些过程,难以区分相关因素和边缘因素,难以预测其时间进程,也难以定位其起源。然而,我们表明,如果用概率驱动的有效距离代替传统的地理距离,复杂的时空模式可以简化为惊人的简单、均匀的波传播模式。在全球航空介导的传染病的背景下,我们表明有效距离可以可靠地预测疾病到达的时间。即使不知道流行病学参数,该方法仍可以提供相对到达时间。该方法还可以识别传播过程的空间起源,并成功应用于 2009 年全球 H1N1 流感大流行和 2003 年 SARS 疫情的数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验