Suppr超能文献

通过舒尔补图增强和独立子空间特征提取推进癌症驱动基因检测。

Advancing cancer driver gene detection via Schur complement graph augmentation and independent subspace feature extraction.

机构信息

School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325027, Wenzhou, China.

School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China; Institute of Computational Science and Technology, Guangzhou University, 510000, Guangzhou, China.

出版信息

Comput Biol Med. 2024 May;174:108484. doi: 10.1016/j.compbiomed.2024.108484. Epub 2024 Apr 16.

Abstract

Accurately identifying cancer driver genes (CDGs) is crucial for guiding cancer treatment and has recently received great attention from researchers. However, the high complexity and heterogeneity of cancer gene regulatory networks limit the precition accuracy of existing deep learning models. To address this, we introduce a model called SCIS-CDG that utilizes Schur complement graph augmentation and independent subspace feature extraction techniques to effectively predict potential CDGs. Firstly, a random Schur complement strategy is adopted to generate two augmented views of gene network within a graph contrastive learning framework. Rapid randomization of the random Schur complement strategy enhances the model's generalization and its ability to handle complex networks effectively. Upholding the Schur complement principle in expectations promotes the preservation of the original gene network's vital structure in the augmented views. Subsequently, we employ feature extraction technology using multiple independent subspaces, each trained with independent weights to reduce inter-subspace dependence and improve the model's expressiveness. Concurrently, we introduced a feature expansion component based on the structure of the gene network to address issues arising from the limited dimensionality of node features. Moreover, it can alleviate the challenges posed by the heterogeneity of cancer gene networks to some extent. Finally, we integrate a learnable attention weight mechanism into the graph neural network (GNN) encoder, utilizing feature expansion technology to optimize the significance of various feature levels in the prediction task. Following extensive experimental validation, the SCIS-CDG model has exhibited high efficiency in identifying known CDGs and uncovering potential unknown CDGs in external datasets. Particularly when compared to previous conventional GNN models, its performance has seen significant improved. The code and data are publicly available at: https://github.com/mxqmxqmxq/SCIS-CDG.

摘要

准确识别癌症驱动基因(CDGs)对于指导癌症治疗至关重要,最近受到了研究人员的广泛关注。然而,癌症基因调控网络的高度复杂性和异质性限制了现有深度学习模型的预测精度。针对这一问题,我们引入了一种名为 SCIS-CDG 的模型,该模型利用 Schur 补图增强和独立子空间特征提取技术,有效地预测潜在的 CDGs。首先,采用随机 Schur 补策略在图对比学习框架内生成基因网络的两个增强视图。随机 Schur 补策略的快速随机化增强了模型的泛化能力和有效处理复杂网络的能力。在期望中坚持 Schur 补原理,促进了增强视图中原始基因网络重要结构的保留。随后,我们采用了基于多重独立子空间的特征提取技术,每个子空间都使用独立的权重进行训练,以减少子空间之间的依赖关系并提高模型的表达能力。同时,我们引入了基于基因网络结构的特征扩展组件,以解决节点特征维度有限带来的问题。此外,它在一定程度上可以缓解癌症基因网络异质性带来的挑战。最后,我们将可学习的注意力权重机制集成到图神经网络(GNN)编码器中,利用特征扩展技术优化预测任务中各种特征层次的重要性。经过广泛的实验验证,SCIS-CDG 模型在识别已知 CDGs 和揭示外部数据集的潜在未知 CDGs 方面表现出了高效性。特别是与以前的传统 GNN 模型相比,其性能得到了显著提高。代码和数据可在以下网址获得:https://github.com/mxqmxqmxq/SCIS-CDG。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验