Suppr超能文献

多尺度图和谐:通过对比学习释放U-Net在医学图像分割中的潜力。

Multi-scale graph harmonies: Unleashing U-Net's potential for medical image segmentation through contrastive learning.

作者信息

Wu Jie, Ma Jiquan, Xi Heran, Li Jinbao, Zhu Jinghua

机构信息

School of Computer Science and Technology, Heilongjiang University, Harbin, 150000, China.

School of Electronic Engineering, Heilongjiang University, Harbin, 150000, China.

出版信息

Neural Netw. 2025 Feb;182:106914. doi: 10.1016/j.neunet.2024.106914. Epub 2024 Nov 23.

Abstract

Medical image segmentation is essential for accurately representing tissues and organs in scans, improving diagnosis, guiding treatment, enabling quantitative analysis, and advancing AI-assisted healthcare. Organs and lesion areas in medical images have complex geometries and spatial relationships. Due to variations in the size and location of lesion areas, automatic segmentation faces significant challenges. While Convolutional Neural Networks (CNNs) and Transformers have proven effective in segmentation task, they still possess inherent limitations. Because these models treat images as regular grids or sequences of patches, they struggle to learn the geometric features of an image, which are essential for capturing irregularities and subtle details. In this paper we propose a novel segmentation model, MSGH, which utilizes Graph Neural Network (GNN) to fully exploit geometric representation for guiding image segmentation. In MSGH, we combine multi-scale features from Pyramid Feature and Graph Feature branches to facilitate information exchange across different networks. We also leverage graph contrastive representation learning to extract features through self-supervised learning to mitigate the impact of category imbalance in medical images. Moreover, we optimize the decoder by integrating Transformer to enhance the model's capability in restoring the intricate image details feature. We conducted a comprehensive experimental study on ACDC, Synapse and BraTS datasets to validate the effectiveness and efficiency of MSGH. Our method achieved an improvement of 2.56-13.41%, 1.04-5.11% and 1.77-3.35% of dice on the three segmentation tasks respectively. The results demonstrate that our model consistently performs well compared with state-of-the-art models. The source code is accessible at https://github.com/Dorothywujie/MSGH.

摘要

医学图像分割对于在扫描中准确呈现组织和器官、改善诊断、指导治疗、实现定量分析以及推动人工智能辅助医疗保健至关重要。医学图像中的器官和病变区域具有复杂的几何形状和空间关系。由于病变区域的大小和位置存在差异,自动分割面临重大挑战。虽然卷积神经网络(CNN)和Transformer在分割任务中已被证明有效,但它们仍然存在固有局限性。因为这些模型将图像视为规则网格或补丁序列,所以它们难以学习图像的几何特征,而这些特征对于捕捉不规则性和细微细节至关重要。在本文中,我们提出了一种新颖的分割模型MSGH,它利用图神经网络(GNN)充分利用几何表示来指导图像分割。在MSGH中,我们结合了来自金字塔特征和图特征分支的多尺度特征,以促进不同网络之间的信息交换。我们还利用图对比表示学习通过自监督学习来提取特征,以减轻医学图像中类别不平衡的影响。此外,我们通过集成Transformer来优化解码器,以增强模型恢复复杂图像细节特征的能力。我们在ACDC、Synapse和BraTS数据集上进行了全面的实验研究,以验证MSGH的有效性和效率。我们的方法在三个分割任务上的骰子系数分别提高了2.56 - 13.41%、1.04 - 5.11%和1.77 - 3.35%。结果表明,与现有最先进的模型相比,我们的模型始终表现出色。源代码可在https://github.com/Dorothywujie/MSGH获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验