Suppr超能文献

基于图卷积网络(GCN)的药物协同作用预测:利用药物诱导的基因表达谱。

DRSPRING: Graph convolutional network (GCN)-Based drug synergy prediction utilizing drug-induced gene expression profile.

机构信息

Department of Bio-Information Science, Ewha Womans University, Seoul, 03760, Republic of Korea.

Department of Life Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.

出版信息

Comput Biol Med. 2024 May;174:108436. doi: 10.1016/j.compbiomed.2024.108436. Epub 2024 Apr 8.

Abstract

Great efforts have been made over the years to identify novel drug pairs with synergistic effects. Although numerous computational approaches have been proposed to analyze diverse types of biological big data, the pharmacogenomic profiles, presumably the most direct proxy of drug effects, have been rarely used due to the data sparsity problem. In this study, we developed a composite deep-learning-based model that predicts the drug synergy effect utilizing pharmacogenomic profiles as well as molecular properties. Graph convolutional network (GCN) was used to represent and integrate the chemical structure, genetic interactions, drug-target information, and gene expression profiles of cell lines. Insufficient amount of pharmacogenomic data, i.e., drug-induced expression profiles from the LINCS project, was resolved by augmenting the data with the predicted profiles. Our method learned and predicted the Loewe synergy score in the DrugComb database and achieved a better or comparable performance compared to other published methods in a benchmark test. We also investigated contribution of various input features, which highlighted the value of basal gene expression and pharmacogenomic profiles of each cell line. Importantly, DRSPRING (DRug Synergy PRediction by INtegrated GCN) can be applied to any drug pairs and any cell lines, greatly expanding its applicability compared to previous methods.

摘要

多年来,人们一直在努力寻找具有协同作用的新型药物对。尽管已经提出了许多计算方法来分析各种类型的生物大数据,但由于数据稀疏问题,药物基因组学特征(可能是药物作用最直接的代理)很少被使用。在这项研究中,我们开发了一种基于深度学习的综合模型,利用药物基因组学特征和分子特性来预测药物协同作用效果。图卷积网络(GCN)用于表示和整合化学结构、遗传相互作用、药物-靶标信息和细胞系的基因表达谱。通过用预测的图谱来扩充数据,解决了药物基因组学数据量不足的问题,即来自 LINCS 项目的药物诱导表达图谱。我们的方法在 DrugComb 数据库中学习和预测了 Loewe 协同作用评分,在基准测试中与其他已发表的方法相比,取得了更好或相当的性能。我们还研究了各种输入特征的贡献,这突出了每个细胞系的基础基因表达和药物基因组学特征的价值。重要的是,DRSPRING(通过集成 GCN 进行药物协同作用预测)可以应用于任何药物对和任何细胞系,与以前的方法相比,大大扩展了其适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验