Suppr超能文献

从药物-靶点相互作用的角度阐明人工智能在药物开发中的作用。

Elucidating the role of artificial intelligence in drug development from the perspective of drug-target interactions.

作者信息

Wang Boyang, Zhang Tingyu, Liu Qingyuan, Sutcharitchan Chayanis, Zhou Ziyi, Zhang Dingfan, Li Shao

机构信息

Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China.

出版信息

J Pharm Anal. 2025 Mar;15(3):101144. doi: 10.1016/j.jpha.2024.101144. Epub 2024 Nov 14.

Abstract

Drug development remains a critical issue in the field of biomedicine. With the rapid advancement of information technologies such as artificial intelligence (AI) and the advent of the big data era, AI-assisted drug development has become a new trend, particularly in predicting drug-target associations. To address the challenge of drug-target prediction, AI-driven models have emerged as powerful tools, offering innovative solutions by effectively extracting features from complex biological data, accurately modeling molecular interactions, and precisely predicting potential drug-target outcomes. Traditional machine learning (ML), network-based, and advanced deep learning architectures such as convolutional neural networks (CNNs), graph convolutional networks (GCNs), and transformers play a pivotal role. This review systematically compiles and evaluates AI algorithms for drug- and drug combination-target predictions, highlighting their theoretical frameworks, strengths, and limitations. CNNs effectively identify spatial patterns and molecular features critical for drug-target interactions. GCNs provide deep insights into molecular interactions via relational data, whereas transformers increase prediction accuracy by capturing complex dependencies within biological sequences. Network-based models offer a systematic perspective by integrating diverse data sources, and traditional ML efficiently handles large datasets to improve overall predictive accuracy. Collectively, these AI-driven methods are transforming drug-target predictions and advancing the development of personalized therapy. This review summarizes the application of AI in drug development, particularly in drug-target prediction, and offers recommendations on models and algorithms for researchers engaged in biomedical research. It also provides typical cases to better illustrate how AI can further accelerate development in the fields of biomedicine and drug discovery.

摘要

药物研发仍然是生物医学领域的一个关键问题。随着人工智能(AI)等信息技术的迅速发展以及大数据时代的到来,AI辅助药物研发已成为一种新趋势,尤其是在预测药物-靶点关联方面。为应对药物-靶点预测的挑战,基于AI的模型已成为强大的工具,通过有效从复杂生物数据中提取特征、精确模拟分子相互作用以及准确预测潜在药物-靶点结果,提供创新解决方案。传统机器学习(ML)、基于网络的方法以及诸如卷积神经网络(CNN)、图卷积网络(GCN)和Transformer等先进的深度学习架构发挥着关键作用。本综述系统地汇编和评估了用于药物及药物组合-靶点预测的AI算法,突出了它们的理论框架、优势和局限性。CNN能有效识别对药物-靶点相互作用至关重要的空间模式和分子特征。GCN通过关系数据深入洞察分子相互作用,而Transformer通过捕捉生物序列中的复杂依赖性提高预测准确性。基于网络的模型通过整合多样数据源提供系统视角,传统ML则有效处理大型数据集以提高整体预测准确性。总体而言,这些基于AI的方法正在改变药物-靶点预测并推动个性化治疗的发展。本综述总结了AI在药物研发中的应用,特别是在药物-靶点预测方面,并为从事生物医学研究的人员提供了关于模型和算法的建议。它还提供了典型案例,以更好地说明AI如何能进一步加速生物医学和药物发现领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d4/11910364/dcdb2fc7fc85/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验