Suppr超能文献

利用知识图谱和随机森林预测与女性生殖障碍相关的营养和环境因素。

Predicting nutrition and environmental factors associated with female reproductive disorders using a knowledge graph and random forests.

机构信息

Oregon State University, College of Public Health and Human Sciences, Corvallis, OR, USA.

AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Italy; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; European Laboratory for Learning and Intelligent Systems, ELLIS.

出版信息

Int J Med Inform. 2024 Jul;187:105461. doi: 10.1016/j.ijmedinf.2024.105461. Epub 2024 Apr 17.

Abstract

OBJECTIVE

Female reproductive disorders (FRDs) are common health conditions that may present with significant symptoms. Diet and environment are potential areas for FRD interventions. We utilized a knowledge graph (KG) method to predict factors associated with common FRDs (for example, endometriosis, ovarian cyst, and uterine fibroids).

MATERIALS AND METHODS

We harmonized survey data from the Personalized Environment and Genes Study (PEGS) on internal and external environmental exposures and health conditions with biomedical ontology content. We merged the harmonized data and ontologies with supplemental nutrient and agricultural chemical data to create a KG. We analyzed the KG by embedding edges and applying a random forest for edge prediction to identify variables potentially associated with FRDs. We also conducted logistic regression analysis for comparison.

RESULTS

Across 9765 PEGS respondents, the KG analysis resulted in 8535 significant or suggestive predicted links between FRDs and chemicals, phenotypes, and diseases. Amongst these links, 32 were exact matches when compared with the logistic regression results, including comorbidities, medications, foods, and occupational exposures.

DISCUSSION

Mechanistic underpinnings of predicted links documented in the literature may support some of our findings. Our KG methods are useful for predicting possible associations in large, survey-based datasets with added information on directionality and magnitude of effect from logistic regression. These results should not be construed as causal but can support hypothesis generation.

CONCLUSION

This investigation enabled the generation of hypotheses on a variety of potential links between FRDs and exposures. Future investigations should prospectively evaluate the variables hypothesized to impact FRDs.

摘要

目的

女性生殖系统疾病(FRD)是常见的健康问题,可能会出现明显的症状。饮食和环境是 FRD 干预的潜在领域。我们利用知识图谱(KG)方法来预测与常见 FRD(例如子宫内膜异位症、卵巢囊肿和子宫肌瘤)相关的因素。

材料和方法

我们协调了个性化环境和基因研究(PEGS)中的调查数据,以获取内部和外部环境暴露和健康状况的信息,并与生物医学本体内容进行协调。我们将协调后的数据和本体与补充营养和农业化学数据合并,创建一个 KG。我们通过嵌入边并应用随机森林进行边预测来分析 KG,以识别与 FRD 相关的潜在变量。我们还进行了逻辑回归分析进行比较。

结果

在 9765 名 PEGS 受访者中,KG 分析得出了 8535 个 FRD 与化学物质、表型和疾病之间的显著或提示性预测链接。在这些链接中,与逻辑回归结果相比,有 32 个是完全匹配的,包括共病、药物、食物和职业暴露。

讨论

文献中记录的预测链接的机制基础可能支持我们的部分发现。我们的 KG 方法可用于预测具有方向和效应大小信息的大型基于调查的数据集之间的可能关联,这些信息来自逻辑回归。这些结果不应被解释为因果关系,但可以支持假设的产生。

结论

本研究使我们能够提出各种 FRD 与暴露之间潜在联系的假设。未来的研究应前瞻性地评估假设对 FRD 有影响的变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca4e/11188727/09636969f119/nihms-1992545-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验