Surdo Salvatore, Barillaro Giuseppe
Dipartimento di Ingegneria dell'Informazione, Università di Pisa, via G. Caruso 16, Pisa, 56122, Italy.
Small. 2024 Aug;20(35):e2400499. doi: 10.1002/smll.202400499. Epub 2024 Apr 21.
Sculpting silicon at the micro and nano scales has been game-changing to mold bulk silicon properties and expand, in turn, applications of silicon beyond electronics, namely, in photonics, sensing, medicine, and mechanics, to cite a few. Voltage- and metal-assisted chemical etching (ECE and MaCE, respectively) of silicon in acidic electrolytes have emerged over other micro and nanostructuring technologies thanks to their unique etching features. ECE and MaCE have enabled the fabrication of novel structures and devices not achievable otherwise, complementing those feasible with the deep reactive ion etching (DRIE) technology, the gold standard in silicon machining. Here, a comprehensive review of ECE and MaCE for silicon micro and nano machining is provided. The chemistry and physics ruling the dissolution of silicon are dissected and similarities and differences between ECE and MaCE are discussed showing that they are the two sides of the same coin. The processes governing the anisotropic etching of designed silicon micro and nanostructures are analyzed, and the modulation of etching profile over depth is discussed. The preparation of micro- and nanostructures with tailored optical, mechanical, and thermo(electrical) properties is then addressed, and their applications in photonics, (bio)sensing, (nano)medicine, and micromechanical systems are surveyed. Eventually, ECE and MaCE are benchmarked against DRIE, and future perspectives are highlighted.
在微米和纳米尺度上对硅进行雕刻已经改变了塑造块状硅特性的方式,进而扩展了硅在电子领域之外的应用,比如在光子学、传感、医学和力学等方面。与其他微纳结构技术相比,在酸性电解质中对硅进行电压辅助化学蚀刻(ECE)和金属辅助化学蚀刻(MaCE)因其独特的蚀刻特性而脱颖而出。ECE和MaCE能够制造出用其他方法无法实现的新型结构和器件,对通过深反应离子蚀刻(DRIE)技术(硅加工的黄金标准)可行制造的结构和器件起到了补充作用。在此,对用于硅微纳加工的ECE和MaCE进行全面综述。剖析了控制硅溶解的化学和物理原理,讨论了ECE和MaCE之间的异同,表明它们是同一枚硬币的两面。分析了设计的硅微纳结构的各向异性蚀刻过程,并讨论了蚀刻轮廓随深度的调制。接着探讨了具有定制光学、机械和热(电)特性的微纳结构的制备,并概述了它们在光子学、(生物)传感、(纳米)医学和微机械系统中的应用。最后,将ECE和MaCE与DRIE进行了对比,并突出了未来的发展前景。