Park Seongjun, An Boram, Park SeonJoo
Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
BMC Plant Biol. 2024 Apr 22;24(1):303. doi: 10.1186/s12870-024-05025-4.
Corydalis DC., the largest genus in the family Papaveraceae, comprises > 465 species. Complete plastid genomes (plastomes) of Corydalis show evolutionary changes, including syntenic arrangements, gene losses and duplications, and IR boundary shifts. However, little is known about the evolution of the mitochondrial genome (mitogenome) in Corydalis. Both the organelle genomes and transcriptomes are needed to better understand the relationships between the patterns of evolution in mitochondrial and plastid genomes.
We obtained complete plastid and mitochondrial genomes from Corydalis pauciovulata using a hybrid assembly of Illumina and Oxford Nanopore Technologies reads to assess the evolutionary parallels between the organelle genomes. The mitogenome and plastome of C. pauciovulata had sizes of 675,483 bp and 185,814 bp, respectively. Three ancestral gene clusters were missing from the mitogenome, and expanded IR (46,060 bp) and miniaturized SSC (202 bp) regions were identified in the plastome. The mitogenome and plastome of C. pauciovulata contained 41 and 67 protein-coding genes, respectively; the loss of genes was a plastid-specific event. We also generated a draft genome and transcriptome for C. pauciovulata. A combination of genomic and transcriptomic data supported the functional replacement of acetyl-CoA carboxylase subunit β (accD) by intracellular transfer to the nucleus in C. pauciovulata. In contrast, our analyses suggested a concurrent loss of the NADH-plastoquinone oxidoreductase (ndh) complex in both the nuclear and plastid genomes. Finally, we performed genomic and transcriptomic analyses to characterize DNA replication, recombination, and repair (DNA-RRR) genes in C. pauciovulata as well as the transcriptomes of Liriodendron tulipifera and Nelumbo nuicifera. We obtained 25 DNA-RRR genes and identified their structure in C. pauciovulata. Pairwise comparisons of nonsynonymous (d) and synonymous (d) substitution rates revealed that several DNA-RRR genes in C. pauciovulata have higher d and d values than those in N. nuicifera.
The C. pauciovulata genomic data generated here provide a valuable resource for understanding the evolution of Corydalis organelle genomes. The first mitogenome of Papaveraceae provides an example that can be explored by other researchers sequencing the mitogenomes of related plants. Our results also provide fundamental information about DNA-RRR genes in Corydalis and their related rate variation, which elucidates the relationships between DNA-RRR genes and organelle genome stability.
紫堇属是罂粟科中最大的属,包含超过465个物种。紫堇属的完整质体基因组(质体基因组)显示出进化变化,包括共线排列、基因丢失和重复以及IR边界移动。然而,关于紫堇属线粒体基因组(线粒体基因组)的进化知之甚少。需要细胞器基因组和转录组来更好地理解线粒体和质体基因组进化模式之间的关系。
我们使用Illumina和Oxford Nanopore Technologies读取的混合组装从少花紫堇中获得了完整的质体和线粒体基因组,以评估细胞器基因组之间的进化相似性。少花紫堇的线粒体基因组和质体基因组大小分别为675,483 bp和185,814 bp。线粒体基因组中缺少三个祖先基因簇,并且在质体基因组中鉴定出扩展的IR(46,060 bp)和小型化的SSC(202 bp)区域。少花紫堇的线粒体基因组和质体基因组分别包含41个和67个蛋白质编码基因;基因丢失是质体特有的事件。我们还生成了少花紫堇的基因组草图和转录组。基因组和转录组数据的组合支持了少花紫堇中乙酰辅酶A羧化酶亚基β(accD)通过细胞内转移到细胞核的功能替代。相比之下,我们的分析表明核基因组和质体基因组中同时丢失了NADH-质体醌氧化还原酶(ndh)复合体。最后,我们进行了基因组和转录组分析,以表征少花紫堇中的DNA复制、重组和修复(DNA-RRR)基因以及北美鹅掌楸和莲的转录组。我们获得了25个DNA-RRR基因并确定了它们在少花紫堇中的结构。非同义(dN)和同义(dS)替代率的成对比较表明,少花紫堇中的几个DNA-RRR基因的dN和dS值高于莲中的dN和dS值。
这里生成的少花紫堇基因组数据为理解紫堇属细胞器基因组的进化提供了宝贵资源。罂粟科的第一个线粒体基因组提供了一个例子,可供其他研究人员对相关植物的线粒体基因组进行测序时参考。我们的结果还提供了关于紫堇属中DNA-RRR基因及其相关速率变化的基本信息,阐明了DNA-RRR基因与细胞器基因组稳定性之间的关系。