文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Evaluation of core-shell FeO@Au nanoparticles as radioenhancer in A549 cell lung cancer model.

作者信息

Slama Youssef, Arcambal Angelique, Septembre-Malaterre Axelle, Morel Anne-Laure, Pesnel Sabrina, Gasque Philippe

机构信息

Université de La Réunion, Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), CHU de La Réunion, Site Felix Guyon, Allée des Topazes, SC11021, 97400, Saint-Denis, La Réunion, France.

Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400, Saint-Denis, La Réunion, France.

出版信息

Heliyon. 2024 Apr 5;10(8):e29297. doi: 10.1016/j.heliyon.2024.e29297. eCollection 2024 Apr 30.


DOI:10.1016/j.heliyon.2024.e29297
PMID:38644868
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11033100/
Abstract

In radiotherapy, metallic nanoparticles are of high interest in the fight against cancer for their radiosensitizing effects. This study aimed to evaluate the ability of core-shell FeO@Au nanoparticles to potentiate the irradiation effects on redox-, pro-inflammatory markers, and cell death of A549 human pulmonary cancer cells. The hybrid FeO@Au nanoparticles were synthesized using green chemistry principles by the sonochemistry method. Their characterization by transmission electron microscopy demonstrated an average size of 8 nm and a homogeneous distribution of gold. The decreased hydrodynamic size of these hybrid nanoparticles compared to magnetite (FeO) nanoparticles showed that gold coating significantly reduced the aggregation of FeO particles. The internalization and accumulation of the FeO@Au nanoparticles within the cells were demonstrated by Prussian Blue staining. The reactive oxygen species (ROS) levels measured by the fluorescent probe DCFH-DA were up-regulated, as well as mRNA expression of SOD, catalase, GPx antioxidant enzymes, redox-dependent transcription factor Nrf2, and ROS-producing enzymes (Nox2 and Nox4), quantified by RT-qPCR. Furthermore, irradiation coupled with FeO@Au nanoparticles increased the expression of canonical pro-inflammatory cytokines and chemokines (TNF-α, IL-1β, IL-6, CXCL8, and CCL5) assessed by RT-qPCR and ELISA. Hybrid nanoparticles did not potentiate the increased DNA damage detected by immunofluorescence following the irradiation. Nevertheless, FeO@Au caused cellular damage, leading to apoptosis through activation of caspase 3/7, secondary necrosis quantified by LDH release, and cell growth arrest evaluated by clonogenic-like assay. This study demonstrated the potential of FeO@Au nanoparticles to potentiate the radiosensitivity of cancerous cells.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/2d45edbd2390/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/278903e48cd8/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/da33a07a15e9/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/3651836799bb/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/2a285bba167f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/42833ed72086/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/d1927ae3ee6c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/4e16e4c85dbd/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/e705dd3793e6/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/405bc4effe97/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/2d45edbd2390/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/278903e48cd8/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/da33a07a15e9/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/3651836799bb/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/2a285bba167f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/42833ed72086/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/d1927ae3ee6c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/4e16e4c85dbd/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/e705dd3793e6/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/405bc4effe97/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad4/11033100/2d45edbd2390/gr10.jpg

相似文献

[1]
Evaluation of core-shell FeO@Au nanoparticles as radioenhancer in A549 cell lung cancer model.

Heliyon. 2024-4-5

[2]
The Potential of Human Pulmonary Mesenchymal Stem Cells as Vectors for Radiosensitizing Metallic Nanoparticles: An In Vitro Study.

Cancers (Basel). 2024-9-23

[3]
Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications.

J Nanobiotechnology. 2018-10-13

[4]
Green fabrication of biologically active magnetic core-shell FeO/Au nanoparticles and their potential anticancer effect.

Mater Sci Eng C Mater Biol Appl. 2018-11-6

[5]
Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application.

Spectrochim Acta A Mol Biomol Spectrosc. 2015-9-5

[6]
Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles.

Nanoscale. 2015-5-7

[7]
The role of morphology, shell composition and protein corona formation in Au/FeO composite nanoparticle mediated macrophage responses.

J Mater Chem B. 2021-8-28

[8]
Multi-functional core-shell FeO@Au nanoparticles for cancer diagnosis and therapy.

Colloids Surf B Biointerfaces. 2018-11-15

[9]
Structural and magnetic properties of core-shell Au/FeO nanoparticles.

Sci Rep. 2017-2-6

[10]
Synthesis, transfer, and characterization of core-shell gold-coated magnetic nanoparticles.

MethodsX. 2019-2-8

引用本文的文献

[1]
Radiosensitization of Rare-Earth Nanoparticles Based on the Consistency Between Its K-Edge and the X-Ray Bremsstrahlung Peak.

J Funct Biomater. 2025-1-24

[2]
State-of-the-art application of nanoparticles in radiotherapy: a platform for synergistic effects in cancer treatment.

Strahlenther Onkol. 2024-10-4

[3]
The Potential of Human Pulmonary Mesenchymal Stem Cells as Vectors for Radiosensitizing Metallic Nanoparticles: An In Vitro Study.

Cancers (Basel). 2024-9-23

[4]
Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine.

Pharmaceuticals (Basel). 2024-8-12

本文引用的文献

[1]
Cancer treatment and toxicity outlook of nanoparticles.

Environ Res. 2023-11-15

[2]
Biogenic green metal nano systems as efficient anti-cancer agents.

Environ Res. 2023-7-15

[3]
Chrysin Encapsulated Copper Nanoparticles with Low Dose of Gamma Radiation Elicit Tumor Cell Death Through p38 MAPK/NF-κB Pathways.

Biol Trace Elem Res. 2023-11

[4]
Smart Magnetic Drug Delivery Systems for the Treatment of Cancer.

Nanomaterials (Basel). 2023-2-26

[5]
Synthesis and characterization of actively HER-2 Targeted FeO@Au nanoparticles for molecular radiosensitization of breast cancer.

Bioimpacts. 2023

[6]
Enhanced In Vivo Radiotherapy of Breast Cancer Using Gadolinium Oxide and Gold Hybrid Nanoparticles.

ACS Appl Bio Mater. 2023-2-20

[7]
Current approaches of nanomedicines in the market and various stage of clinical translation.

Acta Pharm Sin B. 2022-7

[8]
Oxidative Damage to Mitochondria Enhanced by Ionising Radiation and Gold Nanoparticles in Cancer Cells.

Int J Mol Sci. 2022-6-21

[9]
Treatment related factors associated with the risk of breast radio-induced-sarcoma.

Radiother Oncol. 2022-6

[10]
Nanoparticles for Cancer Therapy: Current Progress and Challenges.

Nanoscale Res Lett. 2021-12-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索