Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, DF 70910-900, Brasília, Brazil.
Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain.
Sci Rep. 2017 Feb 6;7:41732. doi: 10.1038/srep41732.
We present a systematic study of core-shell Au/FeO nanoparticles produced by thermal decomposition under mild conditions. The morphology and crystal structure of the nanoparticles revealed the presence of Au core of d = (6.9 ± 1.0) nm surrounded by FeO shell with a thickness of 3.5 nm, epitaxially grown onto the Au core surface. The Au/FeO core-shell structure was demonstrated by high angle annular dark field scanning transmission electron microscopy analysis. The magnetite shell grown on top of the Au nanoparticle displayed a thermal blocking state at temperatures below T = 59 K and a relaxed state well above T. Remarkably, an exchange bias effect was observed when cooling down the samples below room temperature under an external magnetic field. Moreover, the exchange bias field (H) started to appear at T40 K and its value increased by decreasing the temperature. This effect has been assigned to the interaction of spins located in the magnetically disordered regions (in the inner and outer surface of the FeO shell) and spins located in the ordered region of the FeO shell.
我们提出了一种通过在温和条件下热分解制备核壳型 Au/FeO 纳米粒子的系统研究。纳米粒子的形态和晶体结构揭示了 Au 核的存在,其直径为(6.9±1.0)nm,周围是厚度约为 3.5nm 的 FeO 壳,在 Au 核表面外延生长。高角度环形暗场扫描透射电子显微镜分析证明了 Au/FeO 核壳结构的存在。在低于 T=59K 的温度下,生长在 Au 纳米颗粒顶部的磁铁矿壳处于热阻塞状态,在高于 T 的温度下处于弛豫状态。值得注意的是,当在室温下将样品冷却到低于室温并施加外磁场时,观察到了交换偏置效应。此外,交换偏置场(H)在 T~40K 时开始出现,并且随着温度的降低而增加。这种效应归因于位于 FeO 壳的无序区(在 FeO 壳的内表面和外表面)中的自旋和位于 FeO 壳的有序区中的自旋之间的相互作用。