Suppr超能文献

优化有限组织样本的蛋白质组学和磷酸化蛋白质组学工作流程。

Optimized Workflow for Proteomics and Phosphoproteomics With Limited Tissue Samples.

机构信息

Functional Genomics Section and Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.

Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.

出版信息

Curr Protoc. 2024 Apr;4(4):e1028. doi: 10.1002/cpz1.1028.

Abstract

Proteomics and phosphoproteomics play crucial roles in elucidating the dynamics of post-transcriptional processes. While experimental methods and workflows have been established in this field, a persistent challenge arises when dealing with small samples containing a limited amount of protein. This limitation can significantly impact the recovery of peptides and phosphopeptides. In response to this challenge, we have developed a comprehensive experimental workflow tailored specifically for small-scale samples, with a special emphasis on neuronal tissues like the trigeminal ganglion. Our proposed workflow consists of seven steps aimed at optimizing the preparation of limited tissue samples for both proteomic and phosphoproteomic analyses. One noteworthy innovation in our approach involves the utilization of a dual enrichment strategy for phosphopeptides. Initially, we employ Fe-NTA Magnetic beads, renowned for their specificity and effectiveness in capturing phosphopeptides. Subsequently, we complement this approach with the TiO-based method, which offers a broader spectrum of phosphopeptide recovery. This innovative workflow not only overcomes the challenges posed by limited sample sizes but also establishes a new benchmark for precision and efficiency in proteomic investigations. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Protein extraction and digestion Basic Protocol 2: TMT labeling and peptide cleanup Basic Protocol 3: IMAC Fe-NTA magnetic beads phosphopeptide enrichment Basic Protocol 4: TiO2 enrichment Basic Protocol 5: Fe-NTA phosphopeptide Enrichment Basic Protocol 6: High pH peptide fractionation Basic protocol 7: LC-MS/MS analysis and database search.

摘要

蛋白质组学和磷酸化蛋白质组学在阐明转录后过程的动态方面发挥着关键作用。虽然在该领域已经建立了实验方法和工作流程,但当处理含有有限量蛋白质的小样本时,仍然存在一个持续的挑战。这种限制会严重影响肽和磷酸肽的回收。针对这一挑战,我们开发了一种专门针对小样本的综合实验工作流程,特别强调三叉神经节等神经元组织。我们提出的工作流程包括七个步骤,旨在优化有限组织样本的制备,以进行蛋白质组学和磷酸化蛋白质组学分析。我们方法中的一个创新之处是使用双富集策略来富集磷酸肽。最初,我们使用 Fe-NTA 磁珠,该磁珠因其特异性和捕获磷酸肽的有效性而闻名。随后,我们用 TiO2 方法补充这种方法,该方法提供了更广泛的磷酸肽回收范围。这种创新的工作流程不仅克服了样本量有限带来的挑战,而且为蛋白质组学研究的精度和效率确立了新的基准。2024 年出版。本文是美国政府的一项工作,在美国属于公有领域。Wiley Periodicals LLC 出版的《当代协议》。基础方案 1:蛋白质提取和消化基础方案 2:TMT 标记和肽纯化基础方案 3:IMAC Fe-NTA 磁珠磷酸肽富集基础方案 4:TiO2 富集基础方案 5:Fe-NTA 磷酸肽富集基础方案 6:高 pH 肽分级基础方案 7:LC-MS/MS 分析和数据库搜索。

相似文献

1
Optimized Workflow for Proteomics and Phosphoproteomics With Limited Tissue Samples.
Curr Protoc. 2024 Apr;4(4):e1028. doi: 10.1002/cpz1.1028.
3
Optimized Enrichment of Phosphoproteomes by Fe-IMAC Column Chromatography.
Methods Mol Biol. 2017;1550:47-60. doi: 10.1007/978-1-4939-6747-6_5.
4
Tandem Mass Tag-Based Phosphoproteomics in Plants.
Methods Mol Biol. 2023;2581:309-319. doi: 10.1007/978-1-0716-2784-6_22.
5
Mass Spectrometry-Based Proteomics for Analysis of Hydrophilic Phosphopeptides.
Methods Mol Biol. 2021;2259:247-257. doi: 10.1007/978-1-0716-1178-4_16.
6
Rapid Shotgun Phosphoproteomics Analysis.
Methods Mol Biol. 2021;2259:259-268. doi: 10.1007/978-1-0716-1178-4_17.
7
Development of an enrichment method for endogenous phosphopeptide characterization in human serum.
Anal Bioanal Chem. 2018 Jan;410(3):1177-1185. doi: 10.1007/s00216-017-0822-8. Epub 2018 Jan 9.
8
A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis.
Anal Chim Acta. 2022 Mar 22;1199:338857. doi: 10.1016/j.aca.2021.338857. Epub 2021 Jul 17.

本文引用的文献

1
Optimized Suspension Trapping Method for Phosphoproteomics Sample Preparation.
Anal Chem. 2023 Jun 27;95(25):9471-9479. doi: 10.1021/acs.analchem.3c00324. Epub 2023 Jun 15.
2
Fe-NTA magnetic beads as an alternative to spin column-based phosphopeptide enrichment.
J Proteomics. 2022 May 30;260:104561. doi: 10.1016/j.jprot.2022.104561. Epub 2022 Mar 21.
3
Visualization of trigeminal ganglion sensory neuronal signaling regulated by Cdk5.
Cell Rep. 2022 Mar 8;38(10):110458. doi: 10.1016/j.celrep.2022.110458.
4
Proteomics: Concepts and applications in human medicine.
World J Biol Chem. 2021 Sep 27;12(5):57-69. doi: 10.4331/wjbc.v12.i5.57.
5
SP2: Rapid and Automatable Contaminant Removal from Peptide Samples for Proteomic Analyses.
J Proteome Res. 2019 Apr 5;18(4):1644-1656. doi: 10.1021/acs.jproteome.8b00916. Epub 2019 Feb 28.
6
Current understanding of trigeminal ganglion structure and function in headache.
Cephalalgia. 2019 Nov;39(13):1661-1674. doi: 10.1177/0333102418786261. Epub 2018 Jul 10.
7
Isolation, Purification, and Culture of Primary Murine Sensory Neurons.
Methods Mol Biol. 2017;1656:229-251. doi: 10.1007/978-1-4939-7237-1_15.
8
Protein digestion: an overview of the available techniques and recent developments.
J Proteome Res. 2013 Mar 1;12(3):1067-77. doi: 10.1021/pr301201x. Epub 2013 Feb 15.
9
Determining in vivo phosphorylation sites using mass spectrometry.
Curr Protoc Mol Biol. 2012 Apr;Chapter 18:Unit18.19.1-27. doi: 10.1002/0471142727.mb1819s98.
10
Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry.
Mass Spectrom Rev. 2010 Jan-Feb;29(1):29-54. doi: 10.1002/mas.20219.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验