Suppr超能文献

基于血红蛋白、白蛋白和球蛋白比值及经典临床病理参数预测鼻咽癌患者的总生存和无进展生存。

Predicting the overall survival and progression-free survival of nasopharyngeal carcinoma patients based on hemoglobin, albumin, and globulin ratio and classical clinicopathological parameters.

机构信息

Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China.

出版信息

Head Neck. 2024 Oct;46(10):2600-2615. doi: 10.1002/hed.27777. Epub 2024 Apr 22.

Abstract

BACKGROUND

Serum biomarkers have a significant impact on the prediction of treatment outcomes in patients diagnosed with nasopharyngeal carcinoma (NPC). The primary aim of this study was to develop and validate a nomogram that incorporates hemoglobin, albumin, and globulin ratio (HAGR) and clinical data to accurately forecast treatment outcomes in patients with NPC.

METHODS

A total of 796 patients diagnosed with NPC were included in the study.

RESULTS

The results of the multivariate Cox analysis revealed that TNM stage and HAGR were found to be significant independent prognostic factors for OS and PFS. Furthermore, the utilization of the nomogram demonstrated a significant improvement in the evaluation of OS, PFS compared with the eighth TNM staging system. Additionally, the implementation of Kaplan-Meier curves and decision curve analysis curves further confirmed the discriminability and clinical effectiveness of the nomogram.

CONCLUSIONS

The HAGR, an innovative prognostic factor grounded in the realm of immunonutrition, has emerged as a promising prognostic marker for both OS and PFS in individuals afflicted with NPC.

摘要

背景

血清生物标志物对预测诊断为鼻咽癌(NPC)的患者的治疗结果有重大影响。本研究的主要目的是开发和验证一个列线图,该列线图结合血红蛋白、白蛋白和球蛋白比值(HAGR)和临床数据,以准确预测 NPC 患者的治疗结果。

方法

共纳入 796 例 NPC 患者进行研究。

结果

多变量 Cox 分析的结果表明,TNM 分期和 HAGR 是 OS 和 PFS 的显著独立预后因素。此外,列线图的应用显示,与第八版 TNM 分期系统相比,OS 和 PFS 的评估得到了显著改善。此外,Kaplan-Meier 曲线和决策曲线分析曲线的实施进一步证实了列线图的判别能力和临床有效性。

结论

HAGR 是免疫营养领域的一个创新的预后因素,作为 OS 和 PFS 的预后标志物,在 NPC 患者中具有良好的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验