文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

趋同的表观遗传学进化导致急性髓系白血病复发。

Convergent epigenetic evolution drives relapse in acute myeloid leukemia.

机构信息

Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, United States.

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States.

出版信息

Elife. 2024 Apr 22;13:e93019. doi: 10.7554/eLife.93019.


DOI:10.7554/eLife.93019
PMID:38647535
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11034943/
Abstract

Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

摘要

急性髓系白血病 (AML) 的复发具有高度侵袭性,且通常对治疗具有耐药性。我们分析了先前发表的 AML 复发队列,发现 40%的复发病例在驱动基因突变没有改变的情况下发生,这表明在很大比例的病例中,非遗传机制驱动了复发。因此,我们使用 26 对匹配的诊断-复发样本进行了 ATAC-seq 分析,以研究 AML 复发的表观遗传模式。这项分析确定了突变稳定 AML 的复发特异性染色质可及性特征,表明 AML 在复发时会发生独立于基因突变的表观遗传进化。在复发时分析白血病干细胞 (LSC) 染色质变化表明,与非 LSCs 相比,这个白血病细胞群经历的表观遗传变化要少得多,而非 LSCs 的表观遗传变化反映了白血病整体的进化。最后,我们使用单细胞 ATAC-seq 与线粒体测序 (mtscATAC) 将诊断时的克隆与它们的表观遗传特征一起映射到复发中。我们发现,与诊断时相比,具有明显线粒体定义的克隆在复发时表现出更相似的染色质可及性,这表明复发 AML 中存在趋同的表观遗传进化。这些结果表明,表观遗传进化是复发 AML 的一个特征,并且在诱导化疗治疗后可以发生趋同的表观遗传进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/ea0444a7333f/elife-93019-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/20e389a9f459/elife-93019-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/06d951edbb45/elife-93019-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/1bc99dfc0875/elife-93019-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/09c8ca4ba93a/elife-93019-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/1c4434eaabae/elife-93019-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/40fc7af33f64/elife-93019-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/f7397c3ff6cd/elife-93019-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/0a90ee04c719/elife-93019-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/5e1efa219235/elife-93019-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/b4c9e88e238a/elife-93019-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/3a4445c838b5/elife-93019-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/ffec86c9864b/elife-93019-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/024e2abb0fe6/elife-93019-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/16a257c2c710/elife-93019-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/ea0444a7333f/elife-93019-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/20e389a9f459/elife-93019-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/06d951edbb45/elife-93019-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/1bc99dfc0875/elife-93019-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/09c8ca4ba93a/elife-93019-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/1c4434eaabae/elife-93019-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/40fc7af33f64/elife-93019-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/f7397c3ff6cd/elife-93019-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/0a90ee04c719/elife-93019-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/5e1efa219235/elife-93019-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/b4c9e88e238a/elife-93019-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/3a4445c838b5/elife-93019-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/ffec86c9864b/elife-93019-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/024e2abb0fe6/elife-93019-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/16a257c2c710/elife-93019-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11034943/ea0444a7333f/elife-93019-sa2-fig1.jpg

相似文献

[1]
Convergent epigenetic evolution drives relapse in acute myeloid leukemia.

Elife. 2024-4-22

[2]
Convergent Epigenetic Evolution Drives Relapse in Acute Myeloid Leukemia.

bioRxiv. 2023-10-10

[3]
Blast cells surviving acute myeloid leukemia induction therapy are in cycle with a signature of FOXM1 activity.

BMC Cancer. 2021-10-28

[4]
Loss of Kat2a enhances transcriptional noise and depletes acute myeloid leukemia stem-like cells.

Elife. 2020-1-27

[5]
Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse.

Blood. 2015-11-26

[6]
Evolution of acute myelogenous leukemia stem cell properties after treatment and progression.

Blood. 2016-9-29

[7]
Immune Escape of Relapsed AML Cells after Allogeneic Transplantation.

N Engl J Med. 2018-10-31

[8]
Epigenetic Abnormalities in Acute Myeloid Leukemia and Leukemia Stem Cells.

Adv Exp Med Biol. 2019

[9]
Exploiting epigenetically mediated changes: Acute myeloid leukemia, leukemia stem cells and the bone marrow microenvironment.

Adv Cancer Res. 2019-1-21

[10]
Analysis of nonleukemic cellular subcompartments reconstructs clonal evolution of acute myeloid leukemia and identifies therapy-resistant preleukemic clones.

Int J Cancer. 2021-6-1

引用本文的文献

[1]
Dynamics of Ribosomal RNA Transcription and Abundance in Normal and Leukemic Hematopoiesis.

bioRxiv. 2025-8-1

[2]
A multi-omic single-cell landscape reveals transcription and epigenetic regulatory features of t(8;21) AML.

J Transl Med. 2025-7-24

[3]
Expression of Aldehyde Dehydrogenase 1A1 in Relapse-Associated Cells in Acute Myeloid Leukemia.

Cells. 2025-7-7

[4]
Mesenchymal stem cells in the bone marrow microenvironment: a double-edged sword for AML.

J Cancer Res Clin Oncol. 2025-6-21

[5]
Acquired resistance in cancer: towards targeted therapeutic strategies.

Nat Rev Cancer. 2025-6-3

[6]
Discovery of candidate functional non-coding mutations in acute myeloid leukemia using single-cell chromatin accessibility sequencing.

Commun Biol. 2025-5-26

[7]
Mutations and MRD: clinical implications of clonal ontogeny.

Hematology Am Soc Hematol Educ Program. 2024-12-6

[8]
EpiCHAOS: a metric to quantify epigenomic heterogeneity in single-cell data.

Genome Biol. 2024-12-3

[9]
Genotype-immunophenotype relationships in -mutant AML clonal evolution uncovered by single cell multiomic analysis.

bioRxiv. 2024-11-12

[10]
Multi-omic analysis of longitudinal acute myeloid leukemia patient samples reveals potential prognostic markers linked to disease progression.

Front Genet. 2024-9-27

本文引用的文献

[1]
Clonal expansion and epigenetic inheritance of long-lasting NK cell memory.

Nat Immunol. 2022-11

[2]
Illuminating the noncoding genome in cancer.

Nat Cancer. 2020-9

[3]
ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis.

Nat Genet. 2021-3

[4]
Nongenetic Evolution Drives Lung Adenocarcinoma Spatial Heterogeneity and Progression.

Cancer Discov. 2021-6

[5]
Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets.

Blood Adv. 2021-2-9

[6]
Chemotherapy Induces Senescence-Like Resilient Cells Capable of Initiating AML Recurrence.

Cancer Discov. 2021-6

[7]
Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling.

Nat Biotechnol. 2021-4

[8]
Noncoding Variants Connect Enhancer Dysregulation with Nuclear Receptor Signaling in Hematopoietic Malignancies.

Cancer Discov. 2020-5

[9]
Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia.

Nat Biotechnol. 2019-12-2

[10]
Subtype-specific regulatory network rewiring in acute myeloid leukemia.

Nat Genet. 2018-11-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索