Suppr超能文献

细胞色素C催化的耐氧原子转移自由基聚合反应。

Cytochrome C catalyzed oxygen tolerant atom-transfer radical polymerization.

作者信息

Xie Peng-Cheng, Guo Xue-Qing, Yang Fu-Qiao, Xu Nuo, Chen Yuan-Yuan, Wang Xing-Qiang, Wang Hongcheng, Yong Yang-Chun

机构信息

Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.

Joint Institute of Jiangsu University-Hongrun Tech, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.

出版信息

Bioresour Bioprocess. 2022 Apr 4;9(1):41. doi: 10.1186/s40643-022-00531-5.

Abstract

Atom-transfer radical polymerization (ATRP) is a well-known technique for controlled polymer synthesis. However, the ATRP usually employed toxic heavy metal ionas as the catalyst and was susceptible to molecular oxygen, which made it should be conducted under strictly anoxic condition. Conducting ATRP under ambient and biocompatible conditions is the major challenge. In this study, cytochrome C was explored as an efficient biocatalyst for ATRP under biocompatible conditions. The cytochrome C catalyzed ATRP showed a relatively low polymer dispersity index of 1.19. More interestingly, the cytochrome C catalyzed ATRP showed superior oxygen resistance as it could be performed under aerobic conditions with high dissolved oxygen level. Further analysis suggested that the Fe(II) embed in the cytochrome C might serve as the catalytic center and methyl radical was responsible for the ATRP catalysis. This work explored new biocompatible catalyst for aerobic ATRP, which might open new dimension for practical ATRP and application of cytochrome C protein.

摘要

原子转移自由基聚合(ATRP)是一种广为人知的可控聚合物合成技术。然而,ATRP通常使用有毒重金属离子作为催化剂,并且易受分子氧影响,这使得它必须在严格的无氧条件下进行。在环境友好和生物相容的条件下进行ATRP是一项重大挑战。在本研究中,细胞色素C被探索作为在生物相容条件下用于ATRP的高效生物催化剂。细胞色素C催化的ATRP显示出相对较低的聚合物分散指数,为1.19。更有趣的是,细胞色素C催化的ATRP表现出优异的抗氧性,因为它可以在高溶解氧水平的有氧条件下进行。进一步分析表明,嵌入细胞色素C中的Fe(II)可能作为催化中心,而甲基自由基负责ATRP催化。这项工作探索了用于有氧ATRP的新型生物相容催化剂,这可能为实际的ATRP和细胞色素C蛋白的应用开辟新的维度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/10992558/ca8502853d1f/40643_2022_531_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验