Department of Chemical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.
Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
J Am Chem Soc. 2021 Jan 13;143(1):286-293. doi: 10.1021/jacs.0c10673. Epub 2020 Dec 29.
Microbes employ a remarkably intricate electron transport system to extract energy from the environment. The respiratory cascade of bacteria culminates in the terminal transfer of electrons onto higher redox potential acceptors in the extracellular space. This general and inducible mechanism of electron efflux during normal bacterial proliferation leads to a characteristic fall in bulk redox potential (), the degree of which is dependent on growth phase, the microbial taxa, and their physiology. Here, we show that the general reducing power of bacteria can be subverted to induce the abiotic production of a carbon-centered radical species for targeted bioorthogonal molecular synthesis. Using two species, and serovar Typhimurium as model microbes, a common redox active aryldiazonium salt is employed to intervene in the terminal respiratory electron flow, affording radical production that is mediated by native redox-active molecular shuttles and active bacterial metabolism. The aryl radicals are harnessed to initiate and sustain a bioorthogonal controlled radical polymerization via reversible addition-fragmentation chain transfer (BacRAFT), yielding a synthetic extracellular matrix of "living" vinyl polymers with predetermined molecular weight and low dispersity. The ability to interface the ubiquitous reducing power of bacteria into synthetic materials design offers a new means for creating engineered living materials with promising adaptive and self-regenerative capabilities.
微生物利用一种极其复杂的电子传递系统从环境中提取能量。细菌的呼吸级联最终导致电子在细胞外空间转移到更高的氧化还原电位受体上。在正常细菌增殖过程中,这种电子外排的一般和诱导机制导致了大量氧化还原电位()的特征下降,其程度取决于生长阶段、微生物类群及其生理学。在这里,我们表明,细菌的一般还原能力可以被颠覆,以诱导产生针对生物正交分子合成的碳中心自由基物种。使用两种模式微生物和 血清型鼠伤寒沙门氏菌,我们采用一种常见的氧化还原活性芳基重氮盐来干预末端呼吸电子流,从而产生由天然氧化还原活性分子穿梭和活跃细菌代谢介导的自由基生成。芳基自由基被利用来引发和维持通过可逆加成-断裂链转移(BacRAFT)的生物正交可控自由基聚合,从而产生具有预定分子量和低分散度的“活”乙烯基聚合物的合成细胞外基质。将细菌无处不在的还原能力与合成材料设计相结合的能力为创造具有有前途的自适应和自修复能力的工程化活材料提供了一种新方法。