Suppr超能文献

工程化大肠杆菌中τ-杜松醇的从头生物合成。

De novo biosynthesis of τ-cadinol in engineered Escherichia coli.

作者信息

Sun Yue, Wu Shaoting, Fu Xiao, Lai Chongde, Guo Daoyi

机构信息

College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.

Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, China.

出版信息

Bioresour Bioprocess. 2022 Mar 21;9(1):29. doi: 10.1186/s40643-022-00521-7.

Abstract

τ-Cadinol is a sesquiterpene that is widely used in perfume, fine chemicals and medicines industry. In this study, we established a biosynthetic pathway for the first time in engineered Escherichia coli for production of τ-cadinol from simple carbon sources. Subsequently, we further improved the τ-cadinol production to 35.9 ± 4.3 mg/L by optimizing biosynthetic pathway and overproduction of rate-limiting enzyme IdI. Finally, the titer was increased to 133.5 ± 11.2 mg/L with a two-phase organic overlay-culture medium system. This study shows an efficient method for the biosynthesis of τ-cadinol in E. coli with the heterologous hybrid MVA pathway.

摘要

τ-杜松醇是一种倍半萜烯,广泛应用于香水、精细化学品和医药行业。在本研究中,我们首次在工程化大肠杆菌中建立了一条生物合成途径,用于从简单碳源生产τ-杜松醇。随后,我们通过优化生物合成途径和过量表达限速酶IdI,将τ-杜松醇的产量进一步提高到35.9±4.3mg/L。最后,采用两相有机覆盖培养基系统,将产量提高到133.5±11.2mg/L。本研究展示了一种利用异源杂交MVA途径在大肠杆菌中高效生物合成τ-杜松醇的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7dc/10991332/1ce54f463b4d/40643_2022_521_Fig1_HTML.jpg

相似文献

1
De novo biosynthesis of τ-cadinol in engineered Escherichia coli.
Bioresour Bioprocess. 2022 Mar 21;9(1):29. doi: 10.1186/s40643-022-00521-7.
2
Metabolic engineering of glycolysis in Escherichia coli for efficient production of patchoulol and τ-cadinol.
Bioresour Technol. 2024 Jan;391(Pt B):130004. doi: 10.1016/j.biortech.2023.130004. Epub 2023 Nov 10.
4
De Novo Biosynthesis of 4-Vinylanisole in Engineered .
J Agric Food Chem. 2024 Feb 28;72(8):4334-4338. doi: 10.1021/acs.jafc.3c09297. Epub 2024 Feb 14.
5
Functional characterization of ZmTPS7 reveals a maize τ-cadinol synthase involved in stress response.
Planta. 2016 Nov;244(5):1065-1074. doi: 10.1007/s00425-016-2570-y. Epub 2016 Jul 15.
6
Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.
Metab Eng. 2014 May;23:62-9. doi: 10.1016/j.ymben.2014.02.009. Epub 2014 Feb 25.
7
De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
Appl Microbiol Biotechnol. 2020 Jun;104(11):4849-4861. doi: 10.1007/s00253-020-10576-1. Epub 2020 Apr 13.
8
Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.
Biotechnol J. 2016 Jul;11(7):981-7. doi: 10.1002/biot.201600013. Epub 2016 Jun 17.
9
Biosynthesis of Methyl Cinnamate in Engineered .
J Agric Food Chem. 2022 Jun 29;70(25):7736-7741. doi: 10.1021/acs.jafc.2c02638. Epub 2022 Jun 16.
10
Efficient Biosynthesis of Curcumin in by Optimizing Pathway Modules and Increasing the Malonyl-CoA Supply.
J Agric Food Chem. 2024 Jan 10;72(1):566-576. doi: 10.1021/acs.jafc.3c07379. Epub 2023 Dec 28.

引用本文的文献

1
Recent Advances in Multiple Strategies for the Biosynthesis of Sesquiterpenols.
Biomolecules. 2025 May 3;15(5):664. doi: 10.3390/biom15050664.
2
Chemical Composition and In Vitro Antioxidant Activity of (Lamiaceae) Essential Oils and Extracts.
Molecules. 2023 May 12;28(10):4062. doi: 10.3390/molecules28104062.

本文引用的文献

1
Directed evolution of mevalonate kinase in by random mutagenesis for improved lycopene.
RSC Adv. 2018 Apr 20;8(27):15021-15028. doi: 10.1039/c8ra01783b. eCollection 2018 Apr 18.
2
Effectiveness of recombinant Escherichia coli on the production of (R)-(+)-perillyl alcohol.
BMC Biotechnol. 2021 Jan 8;21(1):3. doi: 10.1186/s12896-020-00662-7.
3
High-Level Production of Sesquiterpene Patchoulol in .
ACS Synth Biol. 2021 Jan 15;10(1):158-172. doi: 10.1021/acssynbio.0c00521. Epub 2021 Jan 4.
4
De novo biosynthesis of linalool from glucose in engineered Escherichia coli.
Enzyme Microb Technol. 2020 Oct;140:109614. doi: 10.1016/j.enzmictec.2020.109614. Epub 2020 Jun 5.
5
Overexpression of the transcription factor HAC1 improves nerolidol production in engineered yeast.
Enzyme Microb Technol. 2020 Mar;134:109485. doi: 10.1016/j.enzmictec.2019.109485. Epub 2019 Dec 2.
6
Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory.
Microb Cell Fact. 2019 Sep 23;18(1):160. doi: 10.1186/s12934-019-1211-0.
7
Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux.
Nat Commun. 2019 Sep 18;10(1):4248. doi: 10.1038/s41467-019-12247-w.
8
Systematic Optimization of Limonene Production in Engineered Escherichia coli.
J Agric Food Chem. 2019 Jun 26;67(25):7087-7097. doi: 10.1021/acs.jafc.9b01427. Epub 2019 Jun 14.
9
Combinatorial Engineering of Mevalonate Pathway and Diterpenoid Synthases in Escherichia coli for cis-Abienol Production.
J Agric Food Chem. 2019 Jun 12;67(23):6523-6531. doi: 10.1021/acs.jafc.9b02156. Epub 2019 May 31.
10
Biosynthesis of nerol from glucose in the metabolic engineered Escherichia coli.
Bioresour Technol. 2019 Sep;287:121410. doi: 10.1016/j.biortech.2019.121410. Epub 2019 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验