文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度挖掘序列读取档案揭示了水生脊椎动物冠状病毒和其他尼多病毒的主要遗传创新。

Deep mining of the Sequence Read Archive reveals major genetic innovations in coronaviruses and other nidoviruses of aquatic vertebrates.

机构信息

Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.

Cluster of Excellence 2155 RESIST, Hannover, Germany.

出版信息

PLoS Pathog. 2024 Apr 22;20(4):e1012163. doi: 10.1371/journal.ppat.1012163. eCollection 2024 Apr.


DOI:10.1371/journal.ppat.1012163
PMID:38648214
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11065284/
Abstract

Virus discovery by genomics and metagenomics empowered studies of viromes, facilitated characterization of pathogen epidemiology, and redefined our understanding of the natural genetic diversity of viruses with profound functional and structural implications. Here we employed a data-driven virus discovery approach that directly queries unprocessed sequencing data in a highly parallelized way and involves a targeted viral genome assembly strategy in a wide range of sequence similarity. By screening more than 269,000 datasets of numerous authors from the Sequence Read Archive and using two metrics that quantitatively assess assembly quality, we discovered 40 nidoviruses from six virus families whose members infect vertebrate hosts. They form 13 and 32 putative viral subfamilies and genera, respectively, and include 11 coronaviruses with bisegmented genomes from fishes and amphibians, a giant 36.1 kilobase coronavirus genome with a duplicated spike glycoprotein (S) gene, 11 tobaniviruses and 17 additional corona-, arteri-, cremega-, nanhypo- and nangoshaviruses. Genome segmentation emerged in a single evolutionary event in the monophyletic lineage encompassing the subfamily Pitovirinae. We recovered the bisegmented genome sequences of two coronaviruses from RNA samples of 69 infected fishes and validated the presence of poly(A) tails at both segments using 3'RACE PCR and subsequent Sanger sequencing. We report a genetic linkage between accessory and structural proteins whose phylogenetic relationships and evolutionary distances are incongruent with the phylogeny of replicase proteins. We rationalize these observations in a model of inter-family S recombination involving at least five ancestral corona- and tobaniviruses of aquatic hosts. In support of this model, we describe an individual fish co-infected with members from the families Coronaviridae and Tobaniviridae. Our results expand the scale of the known extraordinary evolutionary plasticity in nidoviral genome architecture and call for revisiting fundamentals of genome expression, virus particle biology, host range and ecology of vertebrate nidoviruses.

摘要

通过基因组学和宏基因组学进行病毒发现,促进了病毒组学的研究,有助于描述病原体流行病学特征,并重新定义了我们对具有深远功能和结构意义的病毒自然遗传多样性的理解。在这里,我们采用了一种数据驱动的病毒发现方法,该方法直接以高度并行的方式查询未处理的测序数据,并在广泛的序列相似性范围内采用靶向病毒基因组组装策略。通过筛选来自 Sequence Read Archive 的 269000 多个数据集,我们使用了两种定量评估组装质量的指标,发现了来自六个病毒科的 40 种正粘病毒,它们的成员感染脊椎动物宿主。它们分别形成 13 个和 32 个假定的病毒亚科和属,包括来自鱼类和两栖类的具有双节段基因组的 11 种冠状病毒、一种具有重复刺突糖蛋白(S)基因的巨大 36.1kb 冠状病毒基因组、11 种托巴病毒和 17 种其他冠状病毒、动脉病毒、Cremegavirus、Nanovirus 和 Nanogavirus。基因组分段在单系谱系中单一进化事件中出现,该谱系包含亚科 Pitovirinae。我们从 69 种感染鱼类的 RNA 样本中回收了两种冠状病毒的双节段基因组序列,并使用 3'RACE PCR 和随后的 Sanger 测序验证了两个节段都存在 poly(A)尾巴。我们报告了辅助蛋白和结构蛋白之间的遗传联系,其系统发育关系和进化距离与复制酶蛋白的系统发育不一致。我们在一个涉及至少五种水生宿主的冠状病毒和托巴病毒祖先的家族间 S 重组模型中对这些观察结果进行了合理化。支持该模型,我们描述了一个个体鱼类同时感染冠状病毒科和托巴病毒科成员。我们的研究结果扩展了已知正粘病毒基因组结构的非凡进化可塑性的规模,并呼吁重新审视脊椎动物正粘病毒的基因组表达、病毒粒子生物学、宿主范围和生态学的基本原理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/c41e34bc4cd5/ppat.1012163.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/67062fd7c679/ppat.1012163.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/ca4b85a72e72/ppat.1012163.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/eb02408066b1/ppat.1012163.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/e8a04d6b6a10/ppat.1012163.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/4a4d14032b1c/ppat.1012163.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/c41e34bc4cd5/ppat.1012163.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/67062fd7c679/ppat.1012163.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/ca4b85a72e72/ppat.1012163.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/eb02408066b1/ppat.1012163.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/e8a04d6b6a10/ppat.1012163.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/4a4d14032b1c/ppat.1012163.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c7/11065284/c41e34bc4cd5/ppat.1012163.g006.jpg

相似文献

[1]
Deep mining of the Sequence Read Archive reveals major genetic innovations in coronaviruses and other nidoviruses of aquatic vertebrates.

PLoS Pathog. 2024-4

[2]
Characterization of White bream virus reveals a novel genetic cluster of nidoviruses.

J Virol. 2006-12

[3]
Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes.

PLoS Pathog. 2011-9-8

[4]
Discovery of a novel nidovirus in cattle with respiratory disease.

J Gen Virol. 2015-8

[5]
Identification and Characterization of a Ribose 2'-O-Methyltransferase Encoded by the Ronivirus Branch of Nidovirales.

J Virol. 2016-7-11

[6]
Nidovirales: evolving the largest RNA virus genome.

Virus Res. 2006-4

[7]
Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus.

Virology. 2018-9-7

[8]
A planarian nidovirus expands the limits of RNA genome size.

PLoS Pathog. 2018-11-1

[9]
Slippery when wet: cross-species transmission of divergent coronaviruses in bony and jawless fish and the evolutionary history of the .

Virus Evol. 2021-5-31

[10]
The evolutionary history of vertebrate RNA viruses.

Nature. 2018-4-4

引用本文的文献

[1]
Insights into diversity, host range, and evolution of iflaviruses in Lepidoptera through transcriptome mining.

Virus Evol. 2025-7-7

[2]
SegFinder: an automated tool for identifying complete RNA virus genome segments through co-occurrence in multiple sequenced samples.

Brief Bioinform. 2025-7-2

[3]
Surveillance of coronaviruses in wild aquatic birds in Hong Kong: expanded genetic diversity and discovery of novel subgenus in the .

Virus Evol. 2025-7-1

[4]
How nidoviruses evolved the largest known RNA genomes.

Proc Natl Acad Sci U S A. 2025-3-18

[5]
Giant RNA genomes: Roles of host, translation elongation, genome architecture, and proteome in nidoviruses.

Proc Natl Acad Sci U S A. 2025-2-18

[6]
Genome sizes of animal RNA viruses reflect phylogenetic constraints.

Virus Evol. 2025-1-24

[7]
Insect-specific Alphamesonivirus-1 () in lymph node and lung tissues from two horses with acute respiratory syndrome.

J Virol. 2025-2-25

[8]
The protein structurome of Orthornavirae and its dark matter.

mBio. 2025-2-5

[9]
Insights into the RNA Virome of the Corn Leafhopper , a Major Emergent Threat of Maize in Latin America.

Viruses. 2024-10-9

[10]
Artificial intelligence-based prediction of pathogen emergence and evolution in the world of synthetic biology.

Microb Biotechnol. 2024-10

本文引用的文献

[1]
A second type of N7-guanine RNA cap methyltransferase in an unusual locus of a large RNA virus genome.

Nucleic Acids Res. 2022-10-28

[2]
Expansion of the global RNA virome reveals diverse clades of bacteriophages.

Cell. 2022-10-13

[3]
Opportunities and Challenges of Data-Driven Virus Discovery.

Biomolecules. 2022-8-4

[4]
Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022).

Arch Virol. 2022-11

[5]
Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome.

Science. 2022-4-8

[6]
Petabase-scale sequence alignment catalyses viral discovery.

Nature. 2022-2

[7]
The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2.

Viruses. 2022-1-2

[8]
Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design.

Nat Rev Mol Cell Biol. 2022-1

[9]
Slippery when wet: cross-species transmission of divergent coronaviruses in bony and jawless fish and the evolutionary history of the .

Virus Evol. 2021-5-31

[10]
Specificity and Mechanism of Coronavirus, Rotavirus, and Mammalian Two-Histidine Phosphoesterases That Antagonize Antiviral Innate Immunity.

mBio. 2021-8-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索