Mohammadzadeh Mahsa, Zarei Masoud, Abbasi Hossein, Webster Thomas J, Beheshtizadeh Nima
Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
J Biol Eng. 2024 Apr 22;18(1):29. doi: 10.1186/s13036-024-00425-4.
There is an increasing demand for innovative strategies that effectively promote osteogenesis and enhance bone regeneration. The critical process of bone regeneration involves the transformation of mesenchymal stromal cells into osteoblasts and the subsequent mineralization of the extracellular matrix, making up the complex mechanism of osteogenesis. Icariin's diverse pharmacological properties, such as anti-inflammatory, anti-oxidant, and osteogenic effects, have attracted considerable attention in biomedical research. Icariin, known for its ability to stimulate bone formation, has been found to encourage the transformation of mesenchymal stromal cells into osteoblasts and improve the subsequent process of mineralization. Several studies have demonstrated the osteogenic effects of icariin, which can be attributed to its hormone-like function. It has been found to induce the expression of BMP-2 and BMP-4 mRNAs in osteoblasts and significantly upregulate Osx at low doses. Additionally, icariin promotes bone formation by stimulating the expression of pre-osteoblastic genes like Osx, RUNX2, and collagen type I. However, icariin needs to be effectively delivered to bone to perform such promising functions.Encapsulating icariin within nanoplatforms holds significant promise for promoting osteogenesis and bone regeneration through a range of intricate biological effects. When encapsulated in nanofibers or nanoparticles, icariin exerts its effects directly at the cellular level. Recalling that inflammation is a critical factor influencing bone regeneration, icariin's anti-inflammatory effects can be harnessed and amplified when encapsulated in nanoplatforms. Also, while cell adhesion and cell migration are pivotal stages of tissue regeneration, icariin-loaded nanoplatforms contribute to these processes by providing a supportive matrix for cellular attachment and movement. This review comprehensively discusses icariin-loaded nanoplatforms used for bone regeneration and osteogenesis, further presenting where the field needs to go before icariin can be used clinically.
对有效促进成骨作用和增强骨再生的创新策略的需求日益增加。骨再生的关键过程包括间充质基质细胞向成骨细胞的转化以及随后细胞外基质的矿化,构成了复杂的成骨机制。淫羊藿苷具有多种药理特性,如抗炎、抗氧化和成骨作用,在生物医学研究中引起了相当大的关注。淫羊藿苷以其刺激骨形成的能力而闻名,已被发现可促进间充质基质细胞向成骨细胞的转化,并改善随后的矿化过程。多项研究已证明淫羊藿苷的成骨作用,这可归因于其类似激素的功能。已发现它能诱导成骨细胞中BMP-2和BMP-4 mRNA的表达,并在低剂量时显著上调Osx。此外,淫羊藿苷通过刺激Osx、RUNX2和I型胶原蛋白等前成骨细胞基因的表达来促进骨形成。然而,淫羊藿苷需要有效地输送到骨骼才能发挥这些有前景的功能。将淫羊藿苷封装在纳米平台中有望通过一系列复杂的生物学效应促进成骨作用和骨再生。当淫羊藿苷封装在纳米纤维或纳米颗粒中时,它在细胞水平上直接发挥作用。鉴于炎症是影响骨再生的关键因素,当淫羊藿苷封装在纳米平台中时,其抗炎作用可被利用和放大。此外,虽然细胞黏附和细胞迁移是组织再生的关键阶段,但负载淫羊藿苷的纳米平台通过为细胞附着和移动提供支持性基质来促进这些过程。本综述全面讨论了用于骨再生和成骨作用的负载淫羊藿苷的纳米平台,进一步阐述了在淫羊藿苷可用于临床之前该领域还需要取得哪些进展。