Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA.
School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA.
New Phytol. 2024 Jun;242(5):2059-2076. doi: 10.1111/nph.19737. Epub 2024 Apr 22.
Wide variation in amenability to transformation and regeneration (TR) among many plant species and genotypes presents a challenge to the use of genetic engineering in research and breeding. To help understand the causes of this variation, we performed association mapping and network analysis using a population of 1204 wild trees of Populus trichocarpa (black cottonwood). To enable precise and high-throughput phenotyping of callus and shoot TR, we developed a computer vision system that cross-referenced complementary red, green, and blue (RGB) and fluorescent-hyperspectral images. We performed association mapping using single-marker and combined variant methods, followed by statistical tests for epistasis and integration of published multi-omic datasets to identify likely regulatory hubs. We report 409 candidate genes implicated by associations within 5 kb of coding sequences, and epistasis tests implicated 81 of these candidate genes as regulators of one another. Gene ontology terms related to protein-protein interactions and transcriptional regulation are overrepresented, among others. In addition to auxin and cytokinin pathways long established as critical to TR, our results highlight the importance of stress and wounding pathways. Potential regulatory hubs of signaling within and across these pathways include GROWTH REGULATORY FACTOR 1 (GRF1), PHOSPHATIDYLINOSITOL 4-KINASE β1 (PI-4Kβ1), and OBF-BINDING PROTEIN 1 (OBP1).
在许多植物物种和基因型中,转化和再生(TR)的适宜性存在广泛的差异,这给遗传工程在研究和育种中的应用带来了挑战。为了帮助理解这种差异的原因,我们使用 1204 株黑杨(Populus trichocarpa)的野生树木群体进行了关联图谱和网络分析。为了能够对愈伤组织和芽 TR 进行精确和高通量的表型分析,我们开发了一种计算机视觉系统,该系统交叉参考了互补的红、绿、蓝(RGB)和荧光高光谱图像。我们使用单一标记和组合变体方法进行关联图谱分析,然后进行统计测试,以确定上位性和整合已发表的多组学数据集,以识别可能的调控枢纽。我们报告了 409 个候选基因,这些基因与编码序列 5kb 内的关联有关,并且上位性测试表明其中 81 个候选基因相互调节。与蛋白质-蛋白质相互作用和转录调控相关的基因本体术语等也有过表达。除了生长素和细胞分裂素途径长期以来被认为对 TR 至关重要外,我们的结果还强调了应激和创伤途径的重要性。这些途径内和跨途径的信号转导的潜在调控枢纽包括生长调节因子 1(GRF1)、磷脂酰肌醇 4-激酶 β1(PI-4Kβ1)和 OBF 结合蛋白 1(OBP1)。