Xie Sen, Wan Xiaolin, Wu Yasong, Li Chunxia, Yan Fan, Ouyang Yujie, Ge Haoran, Li Xianda, Liu Yong, Wang Rui, Toriyama Michael Y, Snyder G Jeffrey, Yang Jiong, Zhang Qingjie, Liu Wei, Tang Xinfeng
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
Adv Mater. 2024 Jun;36(26):e2400845. doi: 10.1002/adma.202400845. Epub 2024 Apr 23.
Topological electronic transition is the very promising strategy for achieving high band degeneracy (N) and for optimizing thermoelectric performance. Herein, this work verifies in p-type MgSb Bi that topological electronic transition could be the key mechanism responsible for elevating the N of valence band edge from 1 to 6, leading to much improved thermoelectric performance. Through comprehensive spectroscopy characterizations and theoretical calculations of electronic structures, the topological electronic transition from trivial semiconductor is unambiguously demonstrated to topological semimetal of MgSb Bi with increasing the Bi content, due to the strong spin-orbit coupling of Bi and the band inversion. The distinct evolution of Fermi surface configuration and the multivalley valence band edge with N of 6 are discovered in the Bi-rich compositions, while a peculiar two-step band inversion is revealed for the first time in the end compound MgBi. As a result, the optimal p-type MgSbBi simultaneously obtains a positive bandgap and high N of 6, and thus acquires the largest thermoelectric power factor of 3.54 and 6.93 µW cm K at 300 and 575 K, respectively, outperforming the values in other compositions. This work provides important guidance on improving thermoelectric performance of p-type MgSb Bi utilizing the topological electronic transition.
拓扑电子跃迁是实现高能带简并度(N)和优化热电性能的极有前景的策略。在此,本工作证实了在p型MgSbBi中,拓扑电子跃迁可能是将价带边缘的N值从1提高到6的关键机制,从而使热电性能得到显著改善。通过对电子结构的综合光谱表征和理论计算,明确证明了随着Bi含量的增加,由于Bi的强自旋轨道耦合和能带反转,MgSbBi从平凡半导体向拓扑半金属发生了拓扑电子跃迁。在富Bi成分中发现了费米面构型的明显演变以及具有6重简并度的多谷价带边缘,而在最终化合物MgBi中首次揭示了独特的两步能带反转。结果,最佳p型MgSbBi同时获得了正带隙和6的高N值,因此在300 K和575 K时分别获得了3.54和6.93 μW cm K的最大热电功率因子,优于其他成分的值。这项工作为利用拓扑电子跃迁提高p型MgSbBi的热电性能提供了重要指导。