Li Airan, Wang Yuechu, Li Yuzheng, Yang Xinlei, Nan Pengfei, Liu Kai, Ge Binghui, Fu Chenguang, Zhu Tiejun
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China.
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China.
Nat Commun. 2024 Jun 14;15(1):5108. doi: 10.1038/s41467-024-49440-5.
Low-cost thermoelectric materials with simultaneous high performance and superior plasticity at room temperature are urgently demanded due to the lack of ever-lasting power supply for flexible electronics. However, the inherent brittleness in conventional thermoelectric semiconductors and the inferior thermoelectric performance in plastic organics/inorganics severely limit such applications. Here, we report low-cost inorganic polycrystalline MgSbBiTe, which demonstrates a remarkable combination of large strain (~ 43%) and high figure of merit zT (~ 0.72) at room temperature, surpassing both brittle Bi(Te,Se) (strain ≤ 5%) and plastic Ag(Te,Se,S) and organics (zT ≤ 0.4). By revealing the inherent high plasticity in MgSb and MgBi, capable of sustaining over 30% compressive strain in polycrystalline form, and the remarkable deformability of single-crystalline MgBi under bending, cutting, and twisting, we optimize the Bi contents in MgSbBi (x = 0 to 1) to simultaneously boost its room-temperature thermoelectric performance and plasticity. The exceptional plasticity of MgSbBi is further revealed to be brought by the presence of a dense dislocation network and the persistent Mg-Sb/Bi bonds during slipping. Leveraging its high plasticity and strength, polycrystalline MgSbBi can be easily processed into micro-scale dimensions. As a result, we successfully fabricate both in-plane and out-of-plane flexible MgSbBi thermoelectric modules, demonstrating promising power density. The inherent remarkable plasticity and high thermoelectric performance of MgSbBi hold the potential for significant advancements in flexible electronics and also inspire further exploration of plastic inorganic semiconductors.
由于柔性电子产品缺乏持久的电源供应,迫切需要在室温下同时具备高性能和优异可塑性的低成本热电材料。然而,传统热电半导体固有的脆性以及塑料有机/无机物较差的热电性能严重限制了此类应用。在此,我们报道了低成本的无机多晶MgSbBiTe,它在室温下展现出大应变(约43%)和高优值zT(约0.72)的显著组合,超过了脆性的Bi(Te,Se)(应变≤5%)以及塑料Ag(Te,Se,S)和有机物(zT≤0.4)。通过揭示MgSb和MgBi中固有的高可塑性(多晶形式下能够承受超过30%的压缩应变)以及单晶MgBi在弯曲、切割和扭转下的显著可变形性,我们优化了MgSbBi(x = 0至1)中的Bi含量,以同时提高其室温热电性能和可塑性。MgSbBi的优异可塑性进一步被揭示是由密集位错网络的存在以及滑移过程中持久的Mg-Sb/Bi键所带来的。利用其高可塑性和强度,多晶MgSbBi可以很容易地加工成微尺度尺寸。结果,我们成功制造了面内和面外的柔性MgSbBi热电模块,并展示出有前景的功率密度。MgSbBi固有的显著可塑性和高热电性能在柔性电子产品方面具有实现重大进展的潜力,也激发了对塑料无机半导体的进一步探索。