Mavrogeorgis Emmanouil, Valkenburg Sophie, Siwy Justyna, Latosinska Agnieszka, Glorieux Griet, Mischak Harald, Jankowski Joachim
Mosaiques Diagnostics GmbH, 30659 Hannover, Germany.
Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany.
Proteomes. 2024 Apr 1;12(2):11. doi: 10.3390/proteomes12020011.
Millions of people worldwide currently suffer from chronic kidney disease (CKD), requiring kidney replacement therapy at the end stage. Endeavors to better understand CKD pathophysiology from an omics perspective have revealed major molecular players in several sample sources. Focusing on non-invasive sources, gut microbial communities appear to be disturbed in CKD, while numerous human urinary peptides are also dysregulated. Nevertheless, studies often focus on isolated omics techniques, thus potentially missing the complementary pathophysiological information that multidisciplinary approaches could provide. To this end, human urinary peptidome was analyzed and integrated with clinical and fecal microbiome (16S sequencing) data collected from 110 Non-CKD or CKD individuals (Early, Moderate, or Advanced CKD stage) that were not undergoing dialysis. Participants were visualized in a three-dimensional space using different combinations of clinical and molecular data. The most impactful clinical variables to discriminate patient groups in the reduced dataspace were, among others, serum urea, haemoglobin, total blood protein, urinary albumin, urinary erythrocytes, blood pressure, cholesterol measures, body mass index, Bristol stool score, and smoking; relevant variables were also microbial taxa, including a, , , , , , , and ; urinary peptidome fragments were predominantly derived from proteins of collagen origin; among the non-collagen parental proteins were FXYD2, MGP, FGA, APOA1, and CD99. The urinary peptidome appeared to capture substantial variation in the CKD context. Integrating clinical and molecular data contributed to an improved cohort separation compared to clinical data alone, indicating, once again, the added value of this combined information in clinical practice.
目前,全球数以百万计的人患有慢性肾脏病(CKD),在疾病终末期需要肾脏替代治疗。从组学角度深入了解CKD病理生理学的努力揭示了多种样本来源中的主要分子参与者。聚焦于非侵入性来源,CKD患者的肠道微生物群落似乎受到干扰,同时大量人尿肽也出现失调。然而,研究通常集中在孤立的组学技术上,因此可能会遗漏多学科方法所能提供的互补病理生理信息。为此,对人尿肽组进行了分析,并与从110名未接受透析的非CKD或CKD患者(早期、中期或晚期CKD阶段)收集的临床和粪便微生物组(16S测序)数据进行整合。使用临床和分子数据的不同组合,将参与者在三维空间中可视化。在降维数据空间中区分患者组的最具影响力的临床变量包括血清尿素、血红蛋白、总血蛋白、尿白蛋白、尿红细胞、血压、胆固醇指标、体重指数、布里斯托大便评分和吸烟情况;相关变量还包括微生物分类群,包括a、、、、、、、和;尿肽组片段主要来源于胶原蛋白;非胶原蛋白母蛋白包括FXYD2、MGP、FGA、APOA1和CD99。尿肽组似乎在CKD背景下捕获了大量变异。与仅使用临床数据相比,整合临床和分子数据有助于改善队列分离,再次表明这种组合信息在临床实践中的附加价值。