Suppr超能文献

推进新生儿筛查长期随访:基于登记处、仪表板和高效工作流程的整合。

Advancing Newborn Screening Long-Term Follow-Up: Integration of -Based Registries, Dashboards, and Efficient Workflows.

作者信息

Raboin Katherine, Ellis Debra, Nichols Ginger, Hughes Marcia, Brimacombe Michael, Rubin Karen

机构信息

Connecticut Newborn Screening Network, Connecticut Children's, Hartford, CT 06106, USA.

Center for Social Research, University of Hartford, Hartford, CT 06105, USA.

出版信息

Int J Neonatal Screen. 2024 Mar 25;10(2):27. doi: 10.3390/ijns10020027.

Abstract

The Connecticut Newborn Screening (NBS) Network, in partnership with the Connecticut Department of Public Health, strategically utilized the electronic health record (EHR) system to establish registries for tracking long-term follow-up (LTFU) of NBS patients. After launching the LTFU registry in 2019, the Network obtained funding from the Health Resources and Services Administration to address the slow adoption by specialty care teams. An LTFU model was implemented in the three highest-volume specialty care teams at Connecticut Children's, involving an early childhood cohort diagnosed with an NBS-identified disorder since the formation of the Network in March 2019. This cohort grew from 87 to 115 over the two-year project. Methods included optimizing registries, capturing external data from Health Information Exchanges, incorporating evidence-based guidelines, and conducting qualitative and quantitative evaluations. The early childhood cohort demonstrated significant and sustainable improvements in the percentage of visits up-to-date (%UTD) compared to the non-intervention legacy cohort of patients diagnosed with an NBS disorder before the formation of the Network. Positive trends in the early childhood cohort, including %UTD for visits and condition-specific performance metrics, were observed. The qualitative evaluation highlighted the achievability of practice behavior changes for specialty care teams through responsive support from the nurse analyst. The Network's model serves as a use case for applying and achieving the adoption of population health tools within an EHR system to track care delivery and quickly fill identified care gaps, with the aim of improving long-term health for NBS patients.

摘要

康涅狄格州新生儿筛查(NBS)网络与康涅狄格州公共卫生部合作,战略性地利用电子健康记录(EHR)系统建立了登记处,以跟踪NBS患者的长期随访(LTFU)情况。2019年启动LTFU登记处后,该网络从卫生资源与服务管理局获得资金,以解决专科护理团队采用率低的问题。在康涅狄格州儿童医院三个接诊量最高的专科护理团队中实施了LTFU模式,涉及自2019年3月网络成立以来被诊断患有NBS确诊疾病的幼儿队列。在为期两年的项目中,这个队列从87人增加到了115人。方法包括优化登记处、从健康信息交换中心获取外部数据、纳入循证指南以及进行定性和定量评估。与网络成立前被诊断患有NBS疾病的非干预遗留患者队列相比,幼儿队列在最新就诊百分比(%UTD)方面有显著且可持续的改善。观察到幼儿队列呈现出积极趋势,包括就诊的%UTD和特定疾病的绩效指标。定性评估强调了通过护士分析师的响应式支持,专科护理团队的实践行为改变是可以实现的。该网络的模式可作为一个案例,用于在EHR系统中应用和实现人口健康工具的采用,以跟踪护理服务并迅速填补已发现的护理缺口,旨在改善NBS患者的长期健康状况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b0/11036281/6e134afac95c/IJNS-10-00027-g001.jpg

相似文献

4
Surveillance for Sickle Cell Disease - Sickle Cell Data Collection Program, Two States, 2004-2018.
MMWR Surveill Summ. 2022 Oct 7;71(9):1-18. doi: 10.15585/mmwr.ss7109a1.
6
Critical Care Network in the State of Qatar.
Qatar Med J. 2019 Nov 7;2019(2):2. doi: 10.5339/qmj.2019.qccc.2. eCollection 2019.
7
Using Quality Improvement to Expand and Align State Public Health Long-Term Follow-up Data Collection Across Newborn Screening Conditions.
J Public Health Manag Pract. 2025;31(2):305-312. doi: 10.1097/PHH.0000000000002056. Epub 2024 Sep 6.
8
Long-term follow-up data collection and use in state newborn screening programs.
Arch Pediatr Adolesc Med. 2007 Oct;161(10):994-1000. doi: 10.1001/archpedi.161.10.994.
9
Defining the Minimal Long-Term Follow-Up Data Elements for Newborn Screening.
Int J Neonatal Screen. 2024 May 15;10(2):37. doi: 10.3390/ijns10020037.
10

引用本文的文献

本文引用的文献

1
Developing the VA Geriatric Scholars Programs' Clinical Dashboards Using the PDSA Framework for Quality Improvement.
Appl Clin Inform. 2022 Aug;13(4):961-970. doi: 10.1055/s-0042-1757553. Epub 2022 Oct 12.
2
Ensuring the Life-Span Benefits of Newborn Screening.
Pediatrics. 2019 Dec;144(6). doi: 10.1542/peds.2019-0904. Epub 2019 Nov 6.
3
Clinician dashboard views and improvement in preventative health outcome measures: a retrospective analysis.
BMC Health Serv Res. 2019 Jul 11;19(1):475. doi: 10.1186/s12913-019-4327-3.
4
Using registry data to improve quality of care.
J Cyst Fibros. 2018 Sep;17(5):566-572. doi: 10.1016/j.jcf.2018.06.006. Epub 2018 Jul 5.
5
Big Data's Role in Precision Public Health.
Front Public Health. 2018 Mar 7;6:68. doi: 10.3389/fpubh.2018.00068. eCollection 2018.
6
A dashboard-based system for supporting diabetes care.
J Am Med Inform Assoc. 2018 May 1;25(5):538-547. doi: 10.1093/jamia/ocx159.
8
A framework for assessing outcomes from newborn screening: on the road to measuring its promise.
Mol Genet Metab. 2016 Aug;118(4):221-9. doi: 10.1016/j.ymgme.2016.05.017. Epub 2016 May 31.
9
Dashboards for improving patient care: review of the literature.
Int J Med Inform. 2015 Feb;84(2):87-100. doi: 10.1016/j.ijmedinf.2014.10.001. Epub 2014 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验