Suppr超能文献

利用电子健康记录数据快速开发专科人群登记册和质量指标*。一个敏捷框架。

Rapid Development of Specialty Population Registries and Quality Measures from Electronic Health Record Data*. An Agile Framework.

作者信息

Kannan Vaishnavi, Fish Jason S, Mutz Jacqueline M, Carrington Angela R, Lai Ki, Davis Lisa S, Youngblood Josh E, Rauschuber Mark R, Flores Kathryn A, Sara Evan J, Bhat Deepa G, Willett DuWayne L

出版信息

Methods Inf Med. 2017 Jun 14;56(99):e74-e83. doi: 10.3414/ME16-02-0031.

Abstract

BACKGROUND

Creation of a new electronic health record (EHR)-based registry often can be a "one-off" complex endeavor: first developing new EHR data collection and clinical decision support tools, followed by developing registry-specific data extractions from the EHR for analysis. Each development phase typically has its own long development and testing time, leading to a prolonged overall cycle time for delivering one functioning registry with companion reporting into production. The next registry request then starts from scratch. Such an approach will not scale to meet the emerging demand for specialty registries to support population health and value-based care.

OBJECTIVE

To determine if the creation of EHR-based specialty registries could be markedly accelerated by employing (a) a finite core set of EHR data collection principles and methods, (b) concurrent engineering of data extraction and data warehouse design using a common dimensional data model for all registries, and (c) agile development methods commonly employed in new product development.

METHODS

We adopted as guiding principles to (a) capture data as a byproduct of care of the patient, (b) reinforce optimal EHR use by clinicians, (c) employ a finite but robust set of EHR data capture tool types, and (d) leverage our existing technology toolkit. Registries were defined by a shared condition (recorded on the Problem List) or a shared exposure to a procedure (recorded on the Surgical History) or to a medication (recorded on the Medication List). Any EHR fields needed - either to determine registry membership or to calculate a registry-associated clinical quality measure (CQM) - were included in the enterprise data warehouse (EDW) shared dimensional data model. Extract-transform-load (ETL) code was written to pull data at defined "grains" from the EHR into the EDW model. All calculated CQM values were stored in a single Fact table in the EDW crossing all registries. Registry-specific dashboards were created in the EHR to display both (a) real-time patient lists of registry patients and (b) EDW-generated CQM data. Agile project management methods were employed, including co-development, lightweight requirements documentation with User Stories and acceptance criteria, and time-boxed iterative development of EHR features in 2-week "sprints" for rapid-cycle feedback and refinement.

RESULTS

Using this approach, in calendar year 2015 we developed a total of 43 specialty chronic disease registries, with 111 new EHR data collection and clinical decision support tools, 163 new clinical quality measures, and 30 clinic-specific dashboards reporting on both real-time patient care gaps and summarized and vetted CQM measure performance trends.

CONCLUSIONS

This study suggests concurrent design of EHR data collection tools and reporting can quickly yield useful EHR structured data for chronic disease registries, and bodes well for efforts to migrate away from manual abstraction. This work also supports the view that in new EHR-based registry development, as in new product development, adopting agile principles and practices can help deliver valued, high-quality features early and often.

摘要

背景

创建一个基于新电子健康记录(EHR)的注册系统通常是一项“一次性”的复杂工作:首先要开发新的EHR数据收集和临床决策支持工具,然后从EHR中开发特定于注册系统的数据提取以进行分析。每个开发阶段通常都有其漫长的开发和测试时间,导致交付一个带有配套报告并投入生产的功能正常的注册系统的整体周期时间延长。接下来的注册系统请求又要从头开始。这种方法无法扩展以满足对专科注册系统不断增长的需求,这些注册系统用于支持人群健康和基于价值的医疗。

目的

确定通过采用(a)一套有限的EHR数据收集核心原则和方法,(b)使用适用于所有注册系统的通用维度数据模型对数据提取和数据仓库设计进行并行工程,以及(c)新产品开发中常用的敏捷开发方法,是否可以显著加速基于EHR的专科注册系统的创建。

方法

我们采用以下指导原则:(a)将数据作为患者护理的副产品进行捕获,(b)加强临床医生对EHR的最佳使用,(c)采用一组有限但强大的EHR数据捕获工具类型,以及(d)利用我们现有的技术工具包。注册系统由共享的疾病(记录在问题列表中)、对手术(记录在手术史中)或药物(记录在用药列表中)的共享暴露来定义。确定注册系统成员资格或计算与注册系统相关的临床质量指标(CQM)所需的任何EHR字段都包含在企业数据仓库(EDW)的共享维度数据模型中。编写提取-转换-加载(ETL)代码,以将定义的“粒度”数据从EHR提取到EDW模型中。所有计算出的CQM值都存储在EDW中跨越所有注册系统的单个事实表中。在EHR中创建特定于注册系统的仪表板,以显示(a)注册系统患者的实时列表和(b)EDW生成的CQM数据。采用敏捷项目管理方法,包括共同开发、使用用户故事和验收标准进行轻量级需求文档编制,以及在为期2周的“冲刺”中对EHR功能进行限时迭代开发,以实现快速循环反馈和优化。

结果

使用这种方法,在2015日历年,我们总共开发了43个专科慢性病注册系统,包括111个新的EHR数据收集和临床决策支持工具、163个新的临床质量指标,以及30个特定于诊所的仪表板,用于报告实时患者护理差距以及汇总和审核的CQM指标性能趋势。

结论

本研究表明,EHR数据收集工具和报告的并行设计可以快速为慢性病注册系统生成有用的EHR结构化数据,这对于从手动摘要过渡的努力来说是个好兆头。这项工作还支持这样一种观点,即在基于EHR的新注册系统开发中,与新产品开发一样,采用敏捷原则和实践可以有助于尽早且经常地交付有价值的高质量功能。

相似文献

2
Agile Model Driven Development of Electronic Health Record-Based Specialty Population Registries.
IEEE EMBS Int Conf Biomed Health Inform. 2016 Feb;2016:465-468. doi: 10.1109/BHI.2016.7455935. Epub 2016 Apr 21.
3
Building an electronic health record integrated quality of life outcomes registry for spine surgery.
J Neurosurg Spine. 2016 Jan;24(1):176-85. doi: 10.3171/2015.3.SPINE141127. Epub 2015 Oct 2.
6
Learning from primary care meaningful use exemplars.
J Am Board Fam Med. 2015 May-Jun;28(3):360-70. doi: 10.3122/jabfm.2015.03.140219.
10
Implementation of a data accuracy plan to improve data extraction yield in the Axon Registry®.
Neurology. 2020 Jul 21;95(3):e310-e319. doi: 10.1212/WNL.0000000000009884. Epub 2020 Jun 26.

引用本文的文献

1
P2Y12 Inhibitors Refill Gap Predicts Death in Medicare Beneficiaries on Chronic Dialysis.
Kidney Int Rep. 2024 May 7;9(7):2125-2133. doi: 10.1016/j.ekir.2024.04.053. eCollection 2024 Jul.
2
Health data space nodes for privacy-preserving linkage of medical data to support collaborative secondary analyses.
Front Med (Lausanne). 2024 Apr 10;11:1301660. doi: 10.3389/fmed.2024.1301660. eCollection 2024.
4
Perspectives of Patients About Immediate Access to Test Results Through an Online Patient Portal.
JAMA Netw Open. 2023 Mar 1;6(3):e233572. doi: 10.1001/jamanetworkopen.2023.3572.
8
Can antiepileptic efficacy and epilepsy variables be studied from electronic health records? A review of current approaches.
Seizure. 2021 Feb;85:138-144. doi: 10.1016/j.seizure.2020.11.011. Epub 2021 Jan 13.
9
Implementing electronic health system in Nigeria: perspective assessment in a specialist hospital.
Afr Health Sci. 2020 Jun;20(2):948-954. doi: 10.4314/ahs.v20i2.50.

本文引用的文献

1
Caring for High-Need, High-Cost Patients - An Urgent Priority.
N Engl J Med. 2016 Sep 8;375(10):909-11. doi: 10.1056/NEJMp1608511. Epub 2016 Jul 27.
2
Is the problem list in the eye of the beholder? An exploration of consistency across physicians.
J Am Med Inform Assoc. 2016 Sep;23(5):859-65. doi: 10.1093/jamia/ocv211. Epub 2016 Mar 21.
4
Combining Health Data Uses to Ignite Health System Learning.
Methods Inf Med. 2015;54(6):479-87. doi: 10.3414/ME15-01-0064. Epub 2015 Sep 17.
5
Problem list completeness in electronic health records: A multi-site study and assessment of success factors.
Int J Med Inform. 2015 Oct;84(10):784-90. doi: 10.1016/j.ijmedinf.2015.06.011. Epub 2015 Jul 17.
7
Review of 103 Swedish Healthcare Quality Registries.
J Intern Med. 2015 Jan;277(1):94-136. doi: 10.1111/joim.12303. Epub 2014 Sep 27.
8
The future state of clinical data capture and documentation: a report from AMIA's 2011 Policy Meeting.
J Am Med Inform Assoc. 2013 Jan 1;20(1):134-40. doi: 10.1136/amiajnl-2012-001093. Epub 2012 Sep 8.
9
Use of 13 disease registries in 5 countries demonstrates the potential to use outcome data to improve health care's value.
Health Aff (Millwood). 2012 Jan;31(1):220-7. doi: 10.1377/hlthaff.2011.0762. Epub 2011 Dec 7.
10
What is value in health care?
N Engl J Med. 2010 Dec 23;363(26):2477-81. doi: 10.1056/NEJMp1011024. Epub 2010 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验