Husser Mathieu C, Pham Nhat P, Law Chris, Araujo Flavia R B, Martin Vincent J J, Piekny Alisa
Biology Department, Concordia University, Montreal, Canada.
Center for Microscopy and Cellular Imaging, Concordia University, Montreal, Canada.
Elife. 2024 Apr 23;12:RP92819. doi: 10.7554/eLife.92819.
Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG2) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG2). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.
内源性标签已成为在活细胞中可视化和研究天然蛋白质的宝贵工具。然而,由于同源定向修复效率低,生成携带内源性标签的人类细胞系很困难。最近,一种工程化的分裂型mNeonGreen蛋白被用于在HEK293细胞中生成大规模内源性标签文库。在人类诱导多能干细胞中使用分裂型mNeonGreen进行大规模内源性标记将为研究健康细胞和不同分化细胞类型中的蛋白质功能打开大门。我们构建了一个诱导多能干细胞系来表达分裂型mNeonGreen蛋白的大片段(mNG2),并表明它能够用小片段(mNG1)快速有效地对内源性蛋白质进行标记。我们还证明,基于神经网络的图像恢复能够对诱导多能干细胞中诸如胞质分裂等高度动态的细胞过程进行实时成像研究。这项工作代表了在人类干细胞中构建全基因组内源性标签文库的第一步。