James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, The Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712.
Gorman Cardiovascular Research Group, Smilow Center for Translational Research, University of Pennsylvania, Philadelphia, PA 19146-2701.
J Biomech Eng. 2024 Oct 1;146(10). doi: 10.1115/1.4065376.
Ischemic mitral regurgitation (IMR) occurs from incomplete coaptation of the mitral valve (MV) after myocardial infarction (MI), typically worsened by continued remodeling of the left ventricular (LV). The importance of LV remodeling is clear as IMR is induced by the post-MI dual mechanisms of mitral annular dilation and leaflet tethering from papillary muscle (PM) distension via the MV chordae tendineae (MVCT). However, the detailed etiology of IMR remains poorly understood, in large part due to the complex interactions of the MV and the post-MI LV remodeling processes. Given the patient-specific anatomical complexities of the IMR disease processes, simulation-based approaches represent an ideal approach to improve our understanding of this deadly disease. However, development of patient-specific models of left ventricle-mitral valve (LV-MV) interactions in IMR are complicated by the substantial variability and complexity of the MR etiology itself, making it difficult to extract underlying mechanisms from clinical data alone. To address these shortcomings, we developed a detailed ovine LV-MV finite element (FE) model based on extant comprehensive ovine experimental data. First, an extant ovine LV FE model (Sci. Rep. 2021 Jun 29;11(1):13466) was extended to incorporate the MV using a high fidelity ovine in vivo derived MV leaflet geometry. As it is not currently possible to image the MVCT in vivo, a functionally equivalent MVCT network was developed to create the final LV-MV model. Interestingly, in pilot studies, the MV leaflet strains did not agree well with known in vivo MV leaflet strain fields. We then incorporated previously reported MV leaflet prestrains (J. Biomech. Eng. 2023 Nov 1;145(11):111002) in the simulations. The resulting LV-MV model produced excellent agreement with the known in vivo ovine MV leaflet strains and deformed shapes in the normal state. We then simulated the effects of regional acute infarctions of varying sizes and anatomical locations by shutting down the local myocardial contractility. The remaining healthy (noninfarcted) myocardium mechanical behaviors were maintained, but allowed to adjust their active contractile patterns to maintain the prescribed pressure-volume loop behaviors in the acute post-MI state. For all cases studied, the LV-MV simulation demonstrated excellent agreement with known LV and MV in vivo strains and MV regurgitation orifice areas. Infarct location was shown to play a critical role in resultant MV leaflet strain fields. Specifically, extensional deformations of the posterior leaflets occurred in the posterobasal and laterobasal infarcts, while compressive deformations of the anterior leaflet were observed in the anterobasal infarct. Moreover, the simulated posterobasal infarct induced the largest MV regurgitation orifice area, consistent with experimental observations. The present study is the first detailed LV-MV simulation that reveals the important role of MV leaflet prestrain and functionally equivalent MVCT for accurate predictions of LV-MV interactions. Importantly, the current study further underscored simulation-based methods in understanding MV function as an integral part of the LV.
缺血性二尖瓣反流 (IMR) 发生在心肌梗死后 (MI) 时二尖瓣 (MV) 不完全对合,通常因左心室 (LV) 的持续重塑而加重。LV 重塑的重要性很明显,因为 IMR 是由 MI 后二尖瓣环扩张和瓣叶牵张的双重机制通过 MV 腱索引起的。然而,IMR 的详细病因仍知之甚少,这在很大程度上是由于 MV 和 MI 后 LV 重塑过程的复杂相互作用。鉴于 IMR 疾病过程的患者特定解剖复杂性,基于模拟的方法代表了一种改善我们对这种致命疾病理解的理想方法。然而,开发 IMR 中左心室-二尖瓣 (LV-MV) 相互作用的患者特异性模型受到 MR 病因本身的大量可变性和复杂性的阻碍,使得仅从临床数据中提取潜在机制变得困难。为了解决这些缺点,我们根据现有的综合绵羊实验数据,开发了一种详细的绵羊 LV-MV 有限元 (FE) 模型。首先,使用高保真绵羊体内衍生的 MV 瓣叶几何形状,扩展了现有的绵羊 LV FE 模型 (Sci. Rep. 2021 年 6 月 29 日;11(1):13466) 以纳入 MV。由于目前无法在体内对 MVCT 进行成像,因此开发了功能等效的 MVCT 网络来创建最终的 LV-MV 模型。有趣的是,在初步研究中,MV 瓣叶应变与已知的体内 MV 瓣叶应变场不太吻合。然后,我们在模拟中加入了先前报道的 MV 瓣叶预应变 (J. Biomech. Eng. 2023 年 11 月 1 日;145(11):111002)。产生的 LV-MV 模型与已知的体内绵羊 MV 瓣叶应变和正常状态下的瓣叶变形形状非常吻合。然后,我们通过关闭局部心肌收缩力模拟了不同大小和解剖位置的区域性急性梗死的影响。保留了剩余的健康(非梗死)心肌的力学行为,但允许它们调整其主动收缩模式,以在急性 MI 后保持规定的压力-容积循环行为。对于所有研究的病例,LV-MV 模拟与已知的体内 LV 和 MV 应变以及 MV 反流瓣口面积具有极好的一致性。梗死位置被证明在 MV 瓣叶应变场中起着关键作用。具体而言,后瓣叶的伸张变形发生在后基底和后外侧壁梗死中,而前瓣叶的压缩变形发生在前基底梗死中。此外,模拟的后基底梗死导致最大的 MV 反流瓣口面积,与实验观察结果一致。本研究是第一个详细的 LV-MV 模拟,揭示了 MV 瓣叶预应变和功能等效的 MVCT 在准确预测 LV-MV 相互作用中的重要作用。重要的是,本研究进一步强调了基于模拟的方法在理解 MV 功能方面的重要性,MV 功能是 LV 的一个组成部分。