Suppr超能文献

探讨预测的活体二尖瓣间质细胞变形在其生物合成行为中的作用。

On the role of predicted in vivo mitral valve interstitial cell deformation on its biosynthetic behavior.

机构信息

James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA.

School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.

出版信息

Biomech Model Mechanobiol. 2021 Feb;20(1):135-144. doi: 10.1007/s10237-020-01373-w. Epub 2020 Aug 6.

Abstract

Ischemic mitral regurgitation (IMR), a frequent complication of myocardial infarction, is characterized by regurgitation of blood from the left ventricle back into the left atrium. Physical interventions via surgery or less-invasive techniques are the only available therapies for IMR, with valve repair via undersized ring annuloplasty (URA) generally preferred over valve replacement. However, recurrence of IMR after URA occurs frequently and is attributed to continued remodeling of the MV and infarct region of the left ventricle. The mitral valve interstitial cells (MVICs) that maintain the tissue integrity of the MV leaflets are highly mechanosensitive, and altered loading post-URA is thought to lead to aberrant MVIC-directed tissue remodeling. Although studies have investigated aspects of mechanically directed VIC activation and remodeling potential, there remains a substantial disconnect between organ-level biomechanics and cell-level phenomena. Herein, we utilized an extant multiscale computational model of the MV that linked MVIC to organ-level MV biomechanical behaviors to simulate changes in MVIC deformation following URA. A planar biaxial bioreactor system was then used to cyclically stretch explanted MV leaflet tissue, emulating the in vivo changes in loading following URA. This simulation-directed experimental investigation revealed that post-URA deformations resulted in decreased MVIC activation and collagen mass fraction. These results are consistent with the hypothesis that URA failures post-IMR are due, in part, to reduced MVIC-mediated maintenance of the MV leaflet tissue resulting from a reduction in physical stimuli required for leaflet tissue homeostasis. Such information can inform the development of novel URA strategies with improved durability.

摘要

缺血性二尖瓣反流(IMR)是心肌梗死的常见并发症,其特征是血液从左心室反流回左心房。通过手术或微创技术进行的物理干预是治疗 IMR 的唯一可用疗法,通过小尺寸环瓣成形术(URA)进行瓣膜修复通常优于瓣膜置换。然而,URA 后 IMR 的复发很常见,这归因于 MV 和左心室梗死区域的持续重塑。维持 MV 瓣叶组织完整性的二尖瓣间质细胞(MVIC)对机械负荷高度敏感,URA 后负荷的改变被认为导致 MVIC 异常的组织重塑。尽管研究已经调查了机械定向 VIC 激活和重塑潜力的各个方面,但器官水平生物力学和细胞水平现象之间仍然存在很大的脱节。在此,我们利用现有的 MV 多尺度计算模型,将 MVIC 与器官水平 MV 生物力学行为联系起来,模拟 URA 后 MVIC 变形的变化。然后使用平面双轴生物反应器系统周期性地拉伸离体 MV 瓣叶组织,模拟 URA 后负荷变化。这种模拟指导的实验研究表明,URA 后变形导致 MVIC 激活和胶原质量分数降低。这些结果与假设一致,即 IMR 后 URA 失败部分归因于 MVIC 介导的 MV 瓣叶组织维持减少,这是由于维持瓣叶组织平衡所需的物理刺激减少所致。这些信息可以为新型 URA 策略的发展提供信息,以提高耐久性。

相似文献

1
On the role of predicted in vivo mitral valve interstitial cell deformation on its biosynthetic behavior.
Biomech Model Mechanobiol. 2021 Feb;20(1):135-144. doi: 10.1007/s10237-020-01373-w. Epub 2020 Aug 6.
3
On the in vivo function of the mitral heart valve leaflet: insights into tissue-interstitial cell biomechanical coupling.
Biomech Model Mechanobiol. 2017 Oct;16(5):1613-1632. doi: 10.1007/s10237-017-0908-4. Epub 2017 Apr 20.
4
Quantification and simulation of layer-specific mitral valve interstitial cells deformation under physiological loading.
J Theor Biol. 2015 May 21;373:26-39. doi: 10.1016/j.jtbi.2015.03.004. Epub 2015 Mar 16.
5
Mitral valve leaflet response to ischaemic mitral regurgitation: from gene expression to tissue remodelling.
J R Soc Interface. 2020 May;17(166):20200098. doi: 10.1098/rsif.2020.0098. Epub 2020 May 6.
9
Serotonin receptor 2B signaling with interstitial cell activation and leaflet remodeling in degenerative mitral regurgitation.
J Mol Cell Cardiol. 2018 Feb;115:94-103. doi: 10.1016/j.yjmcc.2017.12.014. Epub 2017 Dec 30.
10

引用本文的文献

3
Functional mechanical behavior of the murine pulmonary heart valve.
Sci Rep. 2023 Aug 8;13(1):12852. doi: 10.1038/s41598-023-40158-w.
4
Functional differences in human aortic valve interstitial cells from patients with varying calcific aortic valve disease.
Front Physiol. 2023 Jun 19;14:1168691. doi: 10.3389/fphys.2023.1168691. eCollection 2023.
5
The effects of strain history on aortic valve interstitial cell activation in a 3D hydrogel environment.
APL Bioeng. 2023 Apr 3;7(2):026101. doi: 10.1063/5.0138030. eCollection 2023 Jun.
6
In vivo assessment of mitral valve leaflet remodelling following myocardial infarction.
Sci Rep. 2022 Oct 26;12(1):18012. doi: 10.1038/s41598-022-22790-0.
8
Pre-surgical Prediction of Ischemic Mitral Regurgitation Recurrence Using In Vivo Mitral Valve Leaflet Strains.
Ann Biomed Eng. 2021 Dec;49(12):3711-3723. doi: 10.1007/s10439-021-02772-5. Epub 2021 Apr 9.
9
On Valve Interstitial Cell Signaling: The Link Between Multiscale Mechanics and Mechanobiology.
Cardiovasc Eng Technol. 2021 Feb;12(1):15-27. doi: 10.1007/s13239-020-00509-4. Epub 2021 Feb 1.
10
Cardiovascular patient-specific modeling: Where are we now and what does the future look like?
APL Bioeng. 2020 Nov 9;4(4):040401. doi: 10.1063/5.0031452. eCollection 2020 Dec.

本文引用的文献

1
The Three-Dimensional Microenvironment of the Mitral Valve: Insights into the Effects of Physiological Loads.
Cell Mol Bioeng. 2018 May 18;11(4):291-306. doi: 10.1007/s12195-018-0529-8. eCollection 2018 Aug.
2
Amplification of nuclear deformation of breast cancer cells by seeding on micropatterned surfaces to better distinguish their malignancies.
Colloids Surf B Biointerfaces. 2019 Nov 1;183:110402. doi: 10.1016/j.colsurfb.2019.110402. Epub 2019 Jul 30.
3
Nuclear envelope deformation controls cell cycle progression in response to mechanical force.
EMBO Rep. 2019 Sep;20(9):e48084. doi: 10.15252/embr.201948084. Epub 2019 Aug 1.
4
On the simulation of mitral valve function in health, disease, and treatment.
J Biomech Eng. 2019 Apr 20;141(7):0708041-07080422. doi: 10.1115/1.4043552.
5
Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association.
Circulation. 2019 Mar 5;139(10):e56-e528. doi: 10.1161/CIR.0000000000000659.
6
Nuclear Deformation During Neutrophil Migration at Sites of Inflammation.
Front Immunol. 2018 Nov 16;9:2680. doi: 10.3389/fimmu.2018.02680. eCollection 2018.
7
A noninvasive method for the determination of in vivo mitral valve leaflet strains.
Int J Numer Method Biomed Eng. 2018 Dec;34(12):e3142. doi: 10.1002/cnm.3142. Epub 2018 Sep 14.
8
Mechanical or Biologic Prostheses for Aortic-Valve and Mitral-Valve Replacement.
N Engl J Med. 2017 Nov 9;377(19):1847-1857. doi: 10.1056/NEJMoa1613792.
9
Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores.
Cell. 2017 Nov 30;171(6):1397-1410.e14. doi: 10.1016/j.cell.2017.10.008. Epub 2017 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验