Suppr超能文献

一种基于人含黄素单加氧酶3的多通道微流控平台用于个性化医疗。

A multi-channel microfluidic platform based on human flavin-containing monooxygenase 3 for personalised medicine.

作者信息

De Angelis Melissa, Schobesberger Silvia, Selinger Florian, Sedlmayr Viktor Laurin, Frauenlob Martin, Corcione Orsola, Dong Shiman, Gilardi Gianfranco, Ertl Peter, Sadeghi Sheila J

机构信息

Department of Life Sciences and Systems Biology, University of Torino via Accademia Albertina 13 10123 Torino Italy

TU Wien, Faculty of Technical Chemistry Getreidemarkt 9 1060 Vienna Austria.

出版信息

RSC Adv. 2024 Apr 23;14(19):13209-13217. doi: 10.1039/d4ra01516a. eCollection 2024 Apr 22.

Abstract

Human flavin-containing monooxygenase 3 (FMO3) is a drug-metabolizing enzyme (DME) which is known to be highly polymorphic. Some of its polymorphic variants are associated with inter-individual differences that contribute to drug response. In order to measure these differences, the implementation of a quick and efficient assay is highly desirable. To this end, in this work a microfluidic immobilized enzyme reactor (μ-IMER) was developed with four separate serpentines where FMO3 and its two common polymorphic variants (V257M and E158K) were covalently immobilized glutaraldehyde cross-linking in the presence of a polylysine coating. Computational fluid dynamics simulations were performed to calculate the selected substrate retention time in serpentines with different surface areas at various flow rates. The oxidation of tamoxifen, an anti-breast cancer drug, was used as a model reaction to characterize the new device in terms of available surface area for immobilization, channel coating, and applied flow rate. The highest amount of product was obtained when applying a 10 μL min flow rate on polylysine-coated serpentines with a surface area of 90 mm each. Moreover, these conditions were used to test the device as a multi-enzymatic platform by simultaneously assessing the conversion of tamoxifen by FMO3 and its two polymorphic variants immobilized on different serpentines of the same chip. The results obtained demonstrate that the differences observed in the conversion of tamoxifen within the chip are similar to those already published (E158K > WT > V257M). Therefore, this microfluidic platform provides a feasible option for fabricating devices for personalised medicine.

摘要

人含黄素单加氧酶3(FMO3)是一种药物代谢酶(DME),已知具有高度多态性。其一些多态性变体与个体间差异有关,这些差异会影响药物反应。为了测量这些差异,非常需要实施一种快速有效的检测方法。为此,在本研究中,开发了一种微流控固定化酶反应器(μ-IMER),它有四个独立的蛇形通道,通过在聚赖氨酸涂层存在下用戊二醛交联,将FMO3及其两种常见的多态性变体(V257M和E158K)共价固定。进行了计算流体动力学模拟,以计算在不同流速下不同表面积的蛇形通道中选定底物的保留时间。以抗乳腺癌药物他莫昔芬的氧化反应作为模型反应,从固定化可用表面积、通道涂层和应用流速等方面对新装置进行表征。当在每个表面积为90 mm²的聚赖氨酸涂层蛇形通道上施加10 μL/min的流速时,获得的产物量最高。此外,利用这些条件,通过同时评估固定在同一芯片不同蛇形通道上的FMO3及其两种多态性变体对他莫昔芬的转化,将该装置作为多酶平台进行测试。所得结果表明,芯片内他莫昔芬转化中观察到的差异与已发表的结果相似(E158K > WT > V257M)。因此,这种微流控平台为制造个性化医疗设备提供了一种可行的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a384/11037025/cca8d45097f8/d4ra01516a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验