Pengsomjit Untika, Alabdo Fatima, Karuwan Chanpen, Kraiya Charoenkwan, Alahmad Waleed, Ozkan Sibel A
Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
Department of Chemistry, Faculty of Science, Electrochemistry and Optical Spectroscopy Center of Excellence, Chulalongkorn University, Bangkok, Thailand.
Crit Rev Anal Chem. 2024 Apr 24:1-19. doi: 10.1080/10408347.2024.2343854.
Graphene, renowned for its exceptional physicochemical attributes, has emerged as a favored substrate for integrating a wide array of inorganic and organic materials in scientific endeavors and innovations. Electrochemical graphene-based nanocomposite sensors have been developed by incorporating diverse nanoparticles into graphene, effectively immobilized onto electrodes through various techniques. These graphene-based nanocomposite sensors have effectively detected and quantified various electroactive species in samples. This review delves into using graphene nanocomposites to fabricate electrochemical sensors, leveraging the exceptional electrical, mechanical, and thermal properties inherent to graphene derivatives. These nanocomposites showcase electrocatalytic activity, substantial surface area, superior electrical conductivity, adsorption capabilities, and notable porosity, which are highly advantageous for sensing applications. A myriad of characterization techniques, including Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area analysis, and X-ray diffraction (XRD), have proven effective in exploring the properties of graphene nanocomposites and validating the adjustable formation of these nanomaterials with graphene. The applicability of these sensors across various matrices, encompassing environmental, food, and biological domains, has been evaluated through electrochemical measurements, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). This review provides a comprehensive overview of synthesis methods, characterization techniques, and sensor applications pertinent to graphene-based nanocomposites. Furthermore, it deliberates on the challenges and future prospects within this burgeoning field.
石墨烯以其卓越的物理化学特性而闻名,已成为科学研究和创新中用于整合各种无机和有机材料的理想基质。通过将各种纳米颗粒掺入石墨烯中,已开发出基于电化学石墨烯的纳米复合传感器,并通过各种技术有效地固定在电极上。这些基于石墨烯的纳米复合传感器已有效地检测和定量了样品中的各种电活性物质。本综述深入探讨了利用石墨烯纳米复合材料制造电化学传感器,利用石墨烯衍生物固有的卓越电学、机械和热学性质。这些纳米复合材料展现出电催化活性、大表面积、优异的导电性、吸附能力和显著的孔隙率,这些对传感应用非常有利。包括拉曼光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、BET表面积分析和X射线衍射(XRD)在内的众多表征技术,已被证明在探索石墨烯纳米复合材料的性质以及验证这些纳米材料与石墨烯的可调控形成方面是有效的。通过循环伏安法(CV)、电化学阻抗谱(EIS)和差分脉冲伏安法(DPV)等电化学测量,评估了这些传感器在包括环境、食品和生物领域在内的各种基质中的适用性。本综述全面概述了与基于石墨烯的纳米复合材料相关的合成方法、表征技术和传感器应用。此外,还探讨了这个新兴领域中的挑战和未来前景。