Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey.
Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey.
Chemosphere. 2022 Mar;291(Pt 1):132807. doi: 10.1016/j.chemosphere.2021.132807. Epub 2021 Nov 8.
The molecularly imprinted polymers (MIP) is an outstanding electrochemical tool that demonstrates good chemical sensitivity and stability. These main advantages, coupled with the material's vast microfabrication flexibility, make molecularly imprinted sensors an attractive sensing device. Herein, it was aimed to develop a state-of-art molecularly imprinted sensor based on CuBiO/rGO@MoS nanocomposite to be utilized for the detection of linagliptin (LNG), a novel hypoglycemic drug. The electrochemical characterizations of linagliptin on the surface of the modified electrode was examined via cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Several characterization methods including transmission electron microscope (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and Energy-dispersive X-ray spectroscopy(EDX), were utilized for electrode characterization. The LNG imprinted voltammetric sensor was developed in 80.0 mM phenol containing 20.0 mM LNG. CuBiO/rGO@MoS nanocomposite on LNG imprinted screen-printed carbon electrode (SPCE) (MIP/CuBiO/rGO@MoS nanocomposite/SCPE) exhibited a linear relationship between peak current and LNG concentration in the range 0.07-0.5 nM with a detection limit of 0.057 nM. In the existence of interfering substances, an LNG imprinted electrode was utilized to analyze urine, human plasma, and tablet samples with adequate selectivity. The developed sensor was also illustrated for stability, repeatability, reproducibility, and reusability.
分子印迹聚合物(MIP)是一种出色的电化学工具,具有良好的化学灵敏度和稳定性。这些主要优势,再加上材料的广泛微制造灵活性,使得分子印迹传感器成为一种有吸引力的传感设备。本文旨在开发一种基于 CuBiO/rGO@MoS 纳米复合材料的先进分子印迹传感器,用于检测新型降血糖药物——利拉格列汀(LNG)。通过循环伏安法(CV)、差分脉冲伏安法(DPV)和电化学阻抗谱(EIS)研究了 LNG 在修饰电极表面的电化学行为。采用透射电子显微镜(TEM)、X 射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)和能谱(EDX)等多种表征方法对电极进行了表征。在含有 20.0 mM LNG 的 80.0 mM 苯酚中,开发了 LNG 印迹伏安传感器。CuBiO/rGO@MoS 纳米复合材料在 LNG 印迹丝网印刷碳电极(SPCE)上(MIP/CuBiO/rGO@MoS 纳米复合材料/SCPE),在 0.07-0.5 nM 的 LNG 浓度范围内,峰电流与 LNG 浓度呈线性关系,检测限为 0.057 nM。在存在干扰物质的情况下,利用 LNG 印迹电极对尿液、人血浆和片剂样品进行了分析,具有足够的选择性。还对开发的传感器的稳定性、重复性、重现性和可重复性进行了说明。